首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Thermal properties of a kind of Japanese fir wood (Abies sachalinensis) were thermogravimetrically analyzed and produced compounds were gas chromatograph mass spectrometrically analyzed for basic study of biomass gasification. Atmosphere during each analysis was controlled to be helium alone or helium with steam–oxygen. Compounds identified in this series of measurements were roughly classified into three groups: (a) phenol and its derivatives, (b) oxygenated cyclic compounds, and (c) oxygenated compounds of low molecule. Their production rates were dependent on both temperature and atmosphere, which well explained high carbon conversion rate from feedstock to gas of advanced gasification technologies, such as entrained-flow type gasification, and high yields of solid and liquid residues of traditional gasification technologies, such as fixed-bed type gasification.  相似文献   

2.
Biomass gasification for synthesis gas production represents a promising source of energy based on plasma treatment of renewable fuel resources. Gasification/pyrolysis of crushed wood as a model substance of biomass has been experimentally carried out in the plasma-chemical reactor equipped with gas–water stabilized torch which offer advantage of low plasma mass-flow, high enthalpy and temperature making it possible to attain an optimal conversion ratio with respect to synthesis gas production in comparison with other types of plasma torches. To investigate this process of gasification in detail with possible impact on performance, a numerical model has been created using ANSYS FLUENT program package. The aim of the work presented is to create a parametric study of biomass gasification based on various diameters of wooden particles. Results for molar fractions of CO for three different particles diameters obtained by the modeling (0.55, 0.52 and 0.48) at the exit are relatively good approximation to the corresponding experimental value (0.60). The numerical results reveal that the efficiency of gasification and syngas production slightly decreases with increasing diameter of the particles. Computed temperature inhomogeneities in the volume of the reactor are strongest for the largest particle diameter and decrease with decreasing size of the particles.  相似文献   

3.
In this study, the main purpose is to develop low-cost catalysts with high activity and stability for high quality syngas production via steam reforming of biomass tar in biomass gasification process. The calcined waste scallop shell(CS) supported copper(Cu) catalysts are prepared for steam reforming of biomass tar. The prepared Cu supported on CS catalysts exhibit higher catalytic activity than those on commercial CaO and Al_2O_3. Characterization results indicate that Cu/CS has a strong interaction between Cu and CaO in CS support, resulting in the formation of calcium copper oxide phase which could stabilize Cu species and provide new active sites for the tar reforming. In addition, the strong basicity of CS support and other inorganic elements contained in CS support could enhance the activity of Cu/CS. The addition of a small amount of Co is found to be able to stabilize the catalytic activity of Cu/CS catalysts,making them reusable after regeneration without any loss of their activities.  相似文献   

4.
轻工业纤维素生物质过程残渣能源化技术   总被引:1,自引:0,他引:1  
以农产品为原料的轻工业大都是典型的流程工业,在通过转化过程将原料转化为食品、饮料、添加剂、调味料、纸和中成药等产品的同时产生被称为过程残渣的固体废物与废料,如白酒糟、酒精糟、醋糟、甘蔗渣、中药渣、油粕、酱渣、菌渣和造纸黑液可熔渣等.这些残渣产生于特定的生产过程,富含纤维素、蛋白质或木质素,因此代表一种已经被集中的生物质资源.它们同时含水50%-80%、易腐烂变质、甚至呈弱酸碱性,因此是重要的环境污染源.本文着眼于轻工生物质过程残渣的高值化利用,分析指出富含纤维素的白酒糟、醋糟、甘蔗渣、中药渣、茶渣和造纸边角料等适合作为生物质能源而被转化利用,并根据资源特征提出了可能的技术路线.通过分别对热化学路线涉及的脱水干燥、燃烧发电与气化发电技术和集成乙醇发酵、沼气发酵的复合转化技术进行技术综述,最后针对不同规模的富含纤维素轻工生物质过程残渣能源化提供了技术选择建议.  相似文献   

5.
为强化生物质气化过程中焦油转化和氢气富集,提出了一种新型解耦双回路气化系统(DDLG) 。该气化系统将气化过程解耦为燃料气化、焦油重整和半焦燃烧三个子过程,分别发生于三个独立的反应器,即气化反应器、重整反应器和燃烧反应器。其中,气化反应器和重整反应器并行布置,分别与燃烧反应器相连,形成两个平行的且可独立控制的双循环回路。以松木屑为原料及兼作为原位焦油重整催化剂的煅烧橄榄石为循环固体热载体,考察了反应条件对 DDLG 中松木屑气化性能的影响。结果表明,重整反应器从气化反应器中解耦,并辅以橄榄石催化剂,可实现焦油高效转化脱除。如气化反应器700℃、重整反应器 850℃和水蒸气与原料中碳的质量比(S/C) 1.2 反应条件下,产品气中焦油含量降低至13.9g /m~3,气体产率和H_2分别达到1.0m~3 /kg,和38.8%。  相似文献   

6.
减少生物质在热转化反应器中Cl与碱金属K和Na以气态组元逸出可有效遏制积灰、腐蚀等现象和减少污染气体排放。采用化学热力学平衡分析方法,在400K~1600K研究了秸秆、树皮、木屑、废木和橄榄渣五种生物质在过剩空气系数分别为0、0.4、0.8的热解和气化过程中Cl与碱金属K和Na的赋存形态变化及逸出特性。结果表明,Cl在热解和气化过程中主要是以KCl(s)、HCl(g)、KCl(g)、(KCl)2(g)和NaCl(g)化合物赋存并相互转化;在800K~1000K时,含Cl固态组元逐渐转化为气态组元;K和Na在900K时开始以气态组元逸出,且热解过程有少量KCN(g)和NaCN(g)逸出,而气化过程,温度大于1000K随过剩空气系数的增加,KCl(g)、K(g)和Na(g)等气态组元量逐渐减少,逐渐转化为NaCl(g)、KOH(g)和NaOH(g);减少Cl和碱金属K和Na逸出的理论最佳热解和气化温度分别为800K和900K。  相似文献   

7.
应用等离子体辅助煤气化反应装置对大同煤进行了实验研究,考察了供气量、供粉速率、发生器输入功率、水蒸气压力以及添加不同质量分数的CaCO3 和CaO对煤气化反应的影响,并对不同条件下产品气体的组成进行了分析。实验结果表明,装置的最佳工艺参数为供煤速率150 g/min、供气量18 m3/h、等离子体发生器输出功率100 kW、水蒸气出口压力0.3 MPa。加入添加剂CaCO3和CaO的质量分数分别为10%和5%时,催化效果最好。根据CaCO3和CaO的实验数据可知,在等离子体辅助煤气化过程中CaCO3起催化作用为主,CO2还原为辅。  相似文献   

8.
This communication reports the beneficial effects of co-gasification of biomass and residual oil to produce syngas. In this regard, various blends of glucose (a biomass surrogate) to vacuum gas oil (VGO) have been employed to investigate the synergic effects on the gasification process. The non-isothermal co-gasification experiments were conducted in a thermogravimetric analyzer at different heating rates and gasifying agents. The analysis showed that the co-gasification rate increased with the increase of glucose content in the feedstock. The presence of the oxygen in the biomass molecules helped the overall gasification process. The maximum gasification rate of 42.70 wt/min (DTGmax) was observed with 25 wt% glucose containing sample. The use of gasifying agents appeared to have some influence, especially during high temperature gasification of the glucose-VGO blends. At a same gasification temperature, the co-gasification rate of glucose-VGO blends were found to be 125.7 wt/min and 98.59 wt%/min for N2 and CO2, respectively. The kinetics of the co-gasification of glucose-VGO blends was conducted based on modified random pore model using TGA experimental data and implemented in MATLAB. The estimated activation energy and rate constants were found to be consistent to the observed co-gasification rates. The apparent activation energies of co-gasification of VGO/biomass blends with different weight percentages shows values ranging 60.56–48.25 kJ/mol. The kinetics analysis suggested that the addition of biomass helped to increase the reaction rate by lowering the activation energy required for accomplishing the reactions compared with petroleum carbonaceous feedstocks. The reaction rate constants isotherms are plotted to show that the k-values are exhibiting similar trends at moderate heating rates between 20 and 60 °C/min. This remark arises due to the nature of the reactions involved which are considered to be inherently similar in this range of heating rate.  相似文献   

9.
《天然气化学杂志》2012,(4):374-380
In this work,experimental studies of biomass gasification under different operating conditions were carried out in an updraft gasifier combined with a copper slag reformer.The influence of gasification temperature,equivalence ratio(ER) and copper slag catalyst addition on gas production and tar yield were investigated.The experimental results showed that the content of H2 and CO,gas yield and LHV increased,while the tar yield and the content of CO2,CH4 and C2Hx in the gas product decreased with the temperature.At 800C,with the increase of ER,the LHV,the tar yield and the content of H2,CO,CH4 and C2Hx in gas products decreased,while the gas yield and the content of CO2 increased.Copper slag was introduced into the secondary reformer for tar decomposition.The Fe3O4 phase in the fresh copper slag was reduced to FeO(Fe2+) and metallic Fe by the gas product.Fe species(FeO and metallic Fe) acted as the active sites for tar catalytic decomposition.The catalytic temperature had a significant influence on tar conversion and the composition of the gas product.Typically,the tar conversion of about 17%-54% could be achieved when the catalytic temperature was varied from 750 to 950 C.Also,the content of H2 and CO increased with the catalytic temperature,while that of CO2,CH4 and C2Hx in the gas product decreased.It was demonstrated that copper slag was a good catalyst for upgrading the gas product from biomass gasification.  相似文献   

10.
In the last decades the interest in the biomass gasification process has increased due to the growing attention to the use of sustainable energy. Biomass is a renewable energy source and represents a valid alternative to fossil fuels. Gasification is the thermochemical conversion of an organic material into a valuable gaseous product, called syngas, and a solid product, called char. The biomass gasification represents an efficient process for the production of power and heat and the production of hydrogen and second-generation biofuels.This paper deals with the state of the art biomass gasification technologies, evaluating advantages and disadvantages, the potential use of the syngas and the application of the biomass gasification. Syngas cleaning though fundamental to evaluate any gasification technology is not included in this paper since; in the authors' opinion, a dedicated review is necessary.  相似文献   

11.
The wine industry is one of the most relevant socio-economic activities in Europe. However, this industry represents a growing problem with negative effects on the environment since it produces large quantities of residues that need appropriate valorization or management. From the perspective of biorefinery and circular economy, the winery residues show high potential to be used for the formulation of new products. Due to the substantial quantities of phenolic compounds, flavonoids, and anthocyanins with high antioxidant potential in their matrix, these residues can be exploited by extracting bioactive compounds before using the remaining biomass for energy purposes or for producing fertilizers. Currently, there is an emphasis on the use of new and greener technologies in order to recover bioactive molecules from solid and liquid winery residues. Once the bio compounds are recovered, the remaining residues can be used for the production of energy through bioprocesses (biogas, bioethanol, bio-oil), thermal processes (pyrolysis, gasification combustion), or biofertilizers (compost), according to the biorefinery concept. This review mainly focuses on the discussion of the feasibility of the application of the biorefinery concept for winery residues. The transition from the lab-scale to the industrial-scale of the different technologies is still lacking and urgent in this sector.  相似文献   

12.
王政  冯太  王涛 《化学通报》2024,87(5):514-527
生物质能是一种可再生能源,它来源于生物体(如植物、动物、微生物等)通过光合作用将太阳能转化为化学能,并以有机物的形式储存。生物质能可以在适当的条件下被转化为热能、电能、生物燃料等,是一种重要的替代传统化石能源的可持续能源。生物质气化作为生物质的开发路径之一,是利用生物质生产合成气的有效方式。本文综述了生物质气化技术的研究,包括传统气化技术、共气化技术、化学链气化技术以及超临界气化技术等。介绍了每个气化技术的实验研究,阐述了各个气化技术的特点;详细介绍了化学链气化中载氧体与共气化中掺杂剂的使用。本文旨在探索使生物质气化效率达到最优的方案,并列举了目前存在的局限性,为进一步发展生物质气化技术以及生物质气化研究提供有益参考。  相似文献   

13.
The mechanism of biomass gasification in the presence of alkali catalysts was investigated using two reactor systems. Tests at both high pressure and low temperature as well as low pressure and high temperature confirmed that an increase in gas production from whole biomass and biomass components is achieved in the presence of alkali. Supporting investigations elucidated the chemical pathways affected by the alkali and the alkali's effect on several physical parameters. The char-steam reaction was judged not to be diffusion limited in our high-temperature system. In addition, alkali-induced swelling of biomass was determined to be unrelated to the catalytic effect.  相似文献   

14.
氧化钙催化煤温和气化研究   总被引:20,自引:6,他引:14  
报道了神木煤在小型流不反应器中,于450~750℃温度内,用CaO催化煤温和气化的研究。结果表明:添加CaO后,气体和半焦产率增加,焦油产率减少;CaO粒子对煤温和气化生成的焦裂解具有明显催化作用;可以明显增加气相中H2、CH4、C1~C5产率,降低半焦中H/C比,CaO还具有明显的固硫和固CO2作用,最后,推测了煤温和气化中CaO催化裂解多环芳烃侧链的机理。  相似文献   

15.
Sulphur is liberated from the coal structure and released in various forms during coal thermal processing. The possibility of sulphur capture, through injection of SO2 into a packed coal bed in a pilot packed bed reactor operated under controlled conditions, was investigated. Results showed that SO2 injection into a packed coal bed leads to sulphur capturing mainly in the coal mineral matter. Mineralogical analysis (XRD) of the ash samples obtained from the experiments indicates that the sulphur-capture products that are formed include FeS, CaS and small amounts of organically associated sulphur. Troilite (FeS) was observed in the SO2 treated samples, while no troilite was observed in the reference samples. Calcite and dolomite are transformed into CaO and other calcium-containing compounds in the pyrolyses zone, with some CaS being formed in the gasification zone via the reaction between SO2 and CaO in the presence of CO from the gasification reactions. CaO formed at the high temperatures in the combustion and ash zone is transformed into CaSO4 upon reaction with SO2 as an oxidizing atmosphere prevails in this zone. The existence of these compounds is dependent on the extent of oxidising or reducing conditions during the process, with CaS favoured under reducing conditions and CaSO4 favoured under oxidising conditions.  相似文献   

16.
生物质在流化床中的空气-水蒸气气化研究   总被引:22,自引:6,他引:22  
以流化床为反应器,对生物质的空气-水蒸气气化特性进行了研究。考察了一些主要参变量,如温度 (700 ℃~900 ℃)、水蒸气/生物质比(0~4.04)、空气当量比(0.19~0.27)以及生物质粒度(0.2 mm~0.9 mm)等对气化结果的影响。在实验研究的条件范围内,生物质产气率在1.43 m3/kg~2.57 m3/kg范围内变化,产气的低热值在6 741 kJ/m3~9 143 kJ/m3范围内变化。实验结果表明:较高的气化温度有利于氢的产生;但气化温度过高会使气体热值下降;与常规的空气气化相比,水蒸气的加入使生物质气化产气率显著提高,但水蒸气加入量过多使气化温度下降,产气率和产气热值降低;生物质颗粒粒度的大小对产气组分的分布和产气率均有影响,较小颗粒的生物质会产生较多的CH4、CO和较少的CO2。  相似文献   

17.
Yao  Xin  Yu  Qingbo  Wang  Kuiming  Xie  Huaqing  Qin  Qin 《Journal of Thermal Analysis and Calorimetry》2018,131(2):1313-1321
Journal of Thermal Analysis and Calorimetry - The experiments of biomass char gasification in granulated blast-furnace (BF) slag using CO2 as gasification agent were carried out isothermally with a...  相似文献   

18.
19.
生物质流化床气化焦油析出特性的研究   总被引:4,自引:1,他引:3  
生物质气化中焦油的存在严重地影响了气化设备的正常运行。为了了解生物质流化床气化过程中焦油的析出和脱除特性,以花生壳、稻草以及木屑为原料,采用流化床气化反应系统,研究了气化温度(750℃~850℃)、空气当量系数(0.15~0.35)以及催化剂(白云石、橄榄石与菱镁矿)的添加等对气体产物中焦油的析出组成特性的影响,并采用色谱 质谱联用仪对焦油的主要成分进行了分析。实验结果表明,随着温度的升高,焦油的量快速降低;催化剂的添加也有类似的结果。这说明高温和催化剂有利于大分子焦油的催化裂解。  相似文献   

20.
基于简单碰撞理论,建立了生物质焦炭CO_2气化反应速率的计算方法,找出了表征指数前因子大小的关键组合参数。在此基础上,对六种生物质及其脱灰焦炭的物理化学特性进行了检测分析,利用热重分析仪在800-1 000℃对各种生物质进行了CO_2等温气化实验,将得到的指数前因子实验数据与模型分析结果进行对比。研究表明,指数前因子与构建的组合参数之间存在较好的相关性,建立的通用关系式可为气化反应规律的进一步阐明提供有益的参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号