首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ladders of relative alkali ion affinities of crown ethers and acyclic analogs were constructed by using the kinetic method. The adducts consisting of two different ethers bound by an alkali metal ion, (M1 + Cat + M2)+, were formed by using fast atom bombardment ionization to desorb the crown ethers and alkali metal ions, then collisionally activated to induce dissociation to (M1 + Cat)+ and (M2 + Cat)+ ions. Based on the relative abundances of the cationized ethers formed, orders of relative alkali ion affinities were assigned. The crown ethers showed higher affinities for specific sizes of metal ions, and this was attributed in part to the optimal spatial fit concept. Size selectivities were more pronounced for the smaller alkali metal ions such as Li+, Na+, and K+ than the larger ions such as Cs+ and Rb+. In general, the cyclic ethers exhibited greater alkali metal ion affinities than the corresponding acyclic analogs, although these effects were less dramatic as the size of the alkali metal ion increased.  相似文献   

2.
The novel unique structures of bis-crown ethers were successfully synthesized from tri (propylene glycol) di-acrylate with amino- and aza-crown ethers through Michael addition. The crown ethers contained the primary and the secondary amine group such as 2-aminomethyl crown ethers, 4-aminobenzo crown ethers and 1-aza crown ethers. The newly synthesized bis-crown ethers were characterized by elemental analyses, IR, 1H NMR, 13C NMR, mass spectrum, respectively. The newly synthesized host compounds of bis-crown ethers showed complex ability with various sizes of alkali metal cations such as Na+, K+, Rb+ and Cs+. The complexation behavior was examined by 1H NMR spectroscopy and UV spectrometry.  相似文献   

3.
Precipitate formation between phosphotungstic acid and crown ethers is a general phenomenon, producing solids with selective ion exchange behavior for the alkali metal ions. Distribution coefficients for Li+, Na+, K+, and Cs+ were measured for a series of these precipitates with different crown ethers. The sorption data are more complicated than for the corresponding phosphomolybdates and indicate a variability in the number of exchangeable sites with H+ and M+ concentration. The crown ether used markedly affects the cation selectivity of the phosphotungstate precipitates.  相似文献   

4.
The selectivity of eight lariat crown ethers in the sym‐dibenzo‐16‐crown‐5 series toward alkali metal ions was studied with electrospray ionization mass spectrometry under different conditions. With the exception of 2g , which is equally selective toward Na+ and Li+, all other lariat crown ethers show the best selectivity toward Li+ in methanol. Factors that influence the selectivity include the water content, counterions, nature of the side arms, and the externally added cations. Iodide gives the best Na+ selectivity with RI > RBr > RCl. Increased water content profoundly increases the Na+ selectivity when the side arm is hydrophilic and the steric hindrance is small. Externally added cations (Cs+ and/or Rb+) enhance the Na+ selectivity by exchanging the smaller Li+ from the cavity.  相似文献   

5.
Stability constants K ML for the 1:1 complexes of Na+, K+, Rb+, and Cs+ with dibenzo-24-crown-8 (DB24C8) and dibenzo-18-crown-6 (DB18C6) in water have been determined by a capillary electrophoretic technique at 25°C. The K ML sequence is Na+ < K+ < Rb+ < Cs+ for DB24C8 and Na+ < K+ > Rb+ > Cs+ for DB18C6. Compared with DB18C6, DB24C8 exhibits higher selectivity for K+ over Na+, but lower selectivity for K+, Rb+, and Cs+. To evaluate the solvation of the complexes in water, their transfer activity coefficients sH2O between polar nonaqueous solvents and water have been calculated. The sH2O values provide the following information: interactions with water of the metal ions and of the crown-ether oxygens are greatly reduced upon complexation and the complexes undergo hydrophobic hydration in water; the character of each alkali metal ion in solvation is more effectively masked by DB24C8 than by DB18C6, because of the larger and more flexible ring structure of DB24C8. Solvent effects on the complex stabilities are discussed on the basis of the sH2O values.  相似文献   

6.
Five new cage‐annulated crown ethers, i.e., 4a, 4b, 6b, 11a, and 11b, have been synthesized and their respective alkali metal picrate extraction profiles along with that of a previously synthesized host molecule, 6a, have been obtained. These results are compared with the corresponding results obtained for electrospray ionization mass spectrometric (ESI‐MS) measurements of relative binding selectivities displayed by the same hosts toward a series of alkali metal chlorides. Among the crown‐5 hosts studied, 6a displays enhanced avidity toward complexation with K+ picrate in liquid‐liquid extraction experiments. Among the three crown‐6 hosts, 4b proved to be the best alkali metal picrate extractant and displayed significant levels of avidity toward complexation with the larger alkali metal cations (i.e., K+, Rb+, and Cs+). The trends in the picrate extraction and the ESI‐MS results obtained herein show several notable similarities and some differences. The similarities generally stem from size‐selective binding properties that are intrinsic to the different cavity sizes of the cage‐annulated macrocycles, whereas the differences reflect the important influence of solvation effects on the binding properties of the macrocycles.  相似文献   

7.
《Electroanalysis》2004,16(21):1785-1790
Binaphthyl‐based crown ethers incorporating anthraquinone, benzoquinone, and 1,4‐dimethoxybezene have been synthesized and tested for Rb+ selective ionophores in the poly(vinyl chloride) (PVC) membrane. The membrane containing NPOE gave a better Rb+ selectivity than those containing either DOA or BPPA as a plasticizer. The response was linear within the concentration range of 1.0×10?5–1.0×10?1 M and the slope was 54.7±0.5 mV/dec. The detection limit was determined to be 9.0×10?6 M and the optimum pH range of the membrane was 6.0–9.0. The ISE membrane exhibits good selectivity for Rb+ over ammonium, alkali metal, and alkaline earth metal ions. Selectivity coefficients for the other metal ions, log KPot were ?2.5 for Li+, ?2.4 for Na+, ?2.0 for H+, ?1.0 for K+, ?1.2 for Cs+, ?1.6 for NH4+, ?4.5 for Mg2+, ?5.0 for Ca2+,?4.9 for Ba2+. The lifetime of the membrane was about one month.  相似文献   

8.
The facilitated transfer of alkali metal ions (Na+, K+, Rb+, and Cs+) by 25,26,27,28‐tetraethoxycarbonylmethoxy‐thiacalix[4]arene across the water/1,2‐dichloroethane interface was investigated by cyclic voltammetry. The dependence of the half‐wave transfer potential on the metal and ligand concentrations was used to formulate the stoichiometric ratio and to evaluate the association constants of the complexes formed between ionophore and metal ions. While the facilitated transfer of Li+ ion was not observed across the water/1,2‐dichloroethane interface, the facilitated transfers were observed by formation of 1 : 1 (metal:ionophore) complex for Na+, K+, and Rb+ ions except for Cs+ ion. In the case of Cs+ a 1 : 2 (metal:ionophore) complex was obtained from its special electrochemical response to the variation of ligand concentrations in the organic phase. The logarithms of the complex association constants, for facilitated transfer of Na+, K+, Rb+, and Cs+, were estimated as 6.52, 7.75, 7.91 (log β1°), and 8.36 (log β2°), respectively.  相似文献   

9.
We have carried out a series of molecular mechanics calculations on the alkali ion complexes of valinomycin. For the ions Na+, K+, Rb+, and Cs+ we have found three-fold rotationally symmetric conformations as the lowest energy structures, while for Li+ a markedly asymmetric configuration is preferred. The relative free energies of the complexes show that Li+ is by far the poorest binding partner in solution, followed by Na+, which is in turn far poorer than any of the three larger ions. The binding selectivity derives from the slower variation of the complexation free energy with ionic size than the ionic solvation free energy, so that the ionophore is unable to compete with the solvent for the smaller ions. Our calculated strain energies suggest that valinomycin's failure to form complexes with the smaller ions in solution is due partially to the rigidity of the ionophore structure, which prevents the central cavity from contracting to accommodate them. Certain geometric criteria indicate that K+ provides the best fit to the binding site, although there is some inconsistency between the energetic and geometric criteria of binding ability.  相似文献   

10.
The complexation reactions between 4′,4″(5″)-di-tert-butyldibenzo-18-crown-6 (DTBDB18C6) and Li+, Na+ and K+ ions were studied conductometrically in different acetonitrile–nitromethane mixtures at various temperatures. The formation constants of the resulting 1:1 complexes were calculated from the computer fitting of the molar conductance-mole ratio data at different temperatures. At 20 °C and in nitromethane solvent, the stability of the resulting complexes varied in the order K+ > Na+ > Li+. The enthalpy and entropy changes of the complexation reactions were evaluated from the temperature dependence of formation constants. It was found that the stability of the resulting complexes increased with increasing nitromethane in the solvent mixture. The TΔS° versus ΔH° plot of thermodynamic data obtained shows a fairly good linear correlation indicating the existence of enthalpy–entropy compensation in the complexation reactions. The ab initio studies calculated at B3LYP/6-31G level of theory, indicate the binding energy of complexes decreases with increasing cation size in the gas phase. In the solution phase, DTBDB18C6 preferentially forms complexes with the larger ions rather than the smaller ions because the solvation energies of the smaller ions are large enough to overcome and reverse the trends in gas phase complexation. The findings of this study suggest that the current understanding of the factors influencing the selectivity of metal ion complexation by crown ethers may be in need of revision.  相似文献   

11.
A series of crown ether phosphonic acid monoethyl esters with crown ether ring size variation from 12-crown-4 to 24-crown-8 is used in bulk chloroform membranes to separate alkali metal cations from mixtures. Selective proton-coupled transport of alkali metal cations from weakly alkaline aqueous phases is achieved. With individual ionizable crown ether carriers, transport selectivity for Li+, Na+, K+, and Rb+-Cs+ is achieved. A closely related lipophilic phosphonic acid monoethyl ester derivative with a cyclohexyl unit in place of the crown ether exhibits transport selectivity for Li+. However, the corresponding phosphonic acid diethyl ester is devoid of transport activity. Effects of structural variation within the carrier upon the selectivity and efficiency of competitive alkali metal cation transport are assessed.  相似文献   

12.
The synthesis of a cylindrical, imine‐based cage composed of two trimeric metallamacrocycles is described. The cage acts as a heterotopic receptor for alkali metal cations. The small cations Li+, Na+, and K+ bind to the outside of the cage with good selectivity for Li+, whereas the larger cations Rb+ and Cs+ are bound inside the cage to form unusual π complexes with a good selectivity for Cs+. Negative heterotopic cooperativity between the two binding sites is observed. The complexation of Cs+ is associated with a color change, which enables the cage to be used as a specific sensor for Cs+.  相似文献   

13.
A series of double-armed benzo-15-crown-5 lariats (3–8) have been synthesized by the reaction of 4′, 5′-bis(bromomethyl)-benzo-15-crown-5 (2) with 4-hydroxybenzaldehyde, phenol, 4-chlorophenol, 4-methoxyphenol, 2-hydroxybenzaldehyde, and 4-acetamidophenol in 43 ~ 82% yields, respectively. The complex stability constants (K S) and thermodynamic parameters for the stoichiometric 1:1 and/or 1:2 complexes of benzo-15-crown-5 1 and double-armed crown ethers 3–8 with alkali cations (Na+, K+, Rb+) have been determined in methanol–water (V/V=8:2) at 25 °C by means of microcalorimetric titrations. As compared with the parent benzo-15-crown-5 1, double-armed crown ethers 3–8 show unremarkable changes in the complex stability constants upon complexation with Na+, but present significantly enhanced binding ability toward cations larger than the crown cavity by the secondly sandwich complexation. Thermodynamically, the sandwich complexations of crown ethers 3-8 with cations are mostly enthalpy-driven processes accompanied with a moderate entropy loss. The binding ability and selectivity of cations by the double-armed crown ethers are discussed from the viewpoints of the electron density, additional binding site, softness, spatial arrangement, and especially the cooperative binding of two crown ether molecules toward one metal ion.  相似文献   

14.
Ultrahigh specific surface area muscovite with different ions at the surface (Li+, Na+, K+, Rb+, Cs+, Ca2+, Sr2+, Ba2+, Cu2+) was treated with aqueous solutions of low molecular weight crown ethers and polymers with crown ether substituents. The adsorption was assessed by UV analysis of the supernatant solution, and with TGA and IR spectroscopy of the mica solids. In contrast to other layered silicates, the low molecular weight crown ethers show no affinity to any of the muscovite surfaces. The polymers can adsorb, however, depending on the type of surface cation. The results indicate that at least some of the crown ether moieties are complexed to surface cations and that the diameter of the ions at the surface plays an important role in the adsorption process.  相似文献   

15.
Kirsi Salorinne 《Tetrahedron》2008,64(8):1798-1807
The synthesis and characterization of tetramethoxy resorcinarene tribenzo-bis-crown ethers, m- and p-TBBC6, are described. The effect of the added aromatic functionality in the crown ether bridge on the alkali metal complexation properties was investigated and compared to the properties of tetramethoxy resorcinarene bis-crown-5 (BC5) by means of 1H NMR spectroscopy and X-ray crystallography. It was found that BC5 and m-TBBC6 were capable of binding alkali metal cations (K+, Rb+, and Cs+), with the highest affinity toward Cs+ cation, while no binding was observed in the case of p-TBBC6, which confirms the significance of the complementarity and preorganization for complexation affinity.  相似文献   

16.
Trends in the bond dissociation energies for the binding of the alkali metal cations, Li+, Na+, K+, Rb+, and Cs+, to a series of ethers, 1–4 dimethyl ethers, 1 and 2 dimethoxy ethanes, and the crown ethers, 12c4, 15c5, and 18c6, are discussed. The bond energies have been determined in previous studies by analysis of the thresholds for collision-induced dissociation of the cation–ether complexes by xenon as measured in a guided ion beam tandem mass spectrometer. Details of the analysis of the data are reviewed and the accuracy of the results ascertained by comparison with theoretical results taken from the literature. Combined, the experimental and theoretical results provide an extensive thermochemical database for evaluation of the metal-crown complexes, a simple example of molecular recognition. These results indicate the importance of optimizing the metal–oxygen bond distances and the orientation of the local dipole on the oxygen towards the metal. Further, it is shown that excited state conformers of these complexes are probably observed in several systems as a result of interesting metal-dependent dynamics in the formation of the complexes.  相似文献   

17.
ACE was applied to the quantitative evaluation of noncovalent binding interactions between benzo‐18‐crown‐6‐ether (B18C6) and several alkali metal ions, Li+, Na+, K+, Rb+ and Cs+, in a mixed binary solvent system, methanol–water (50/50 v/v). The apparent binding (stability) constants (Kb) of B18C6–alkali metal ion complexes in the hydro‐organic medium above were determined from the dependence of the effective electrophoretic mobility of B18C6 on the concentration of alkali metal ions in the BGE using a nonlinear regression analysis. Before regression analysis, the mobilities measured by ACE at ambient temperature and variable ionic strength of the BGE were corrected by a new procedure to the reference temperature, 25°C, and the constant ionic strength, 10 mM . In the 50% v/v methanol–water solvent system, like in pure methanol, B18C6 formed the strongest complex with potassium ion (log Kb=2.89±0.17), the weakest complex with cesium ion (log Kb=2.04±0.20), and no complexation was observed between B18C6 and the lithium ion. In the mixed methanol–water solvent system, the binding constants of the complexes above were found to be about two orders lower than in methanol and about one order higher than in water.  相似文献   

18.
A density functional theory based on interaction of alkali metal cations (Li+, Na+, K+, Rb+ and Cs+) with cyclic peptides constructed from 3 or 4 alanine molecule (CyAla3 and CyAla4), has been investigated using mixed basis set (C, H, O, Li+, Na+ and K+ using 6-31+G(d), and the heavier cations: Rb+ and Cs+ using LANL2DZ). The minimum energy structures, binding energies, and various thermodynamic parameters of free ligands and their metal cations complexes have been determined with B3LYP and CAM-B3LYP functionals. The order of interaction energies were found to be Li> K> Na> Rb> Cs+ and Li> Na> K? Rb> Cs+, calculated at CAM-B3LYP level for the M/CyAla3 and M/CyAla4 complexes, respectively. Their selectivity trend shows that the highest cation selectivity for Li+ over other alkali metal ions has been achieved on the basis of thermodynamic analysis. The main types of driving force host–guest interactions are investigated, the electron-donating O offers lone pair electrons to the contacting LP* of alkali metal cations.  相似文献   

19.
The dibenzo[3n]crown-n were synthesised starting from bis[2-(o-hydroxyphenoxy)ethyl]ether obtained from bis[2-(o-formylphenoxy)ethyl]ether via Baeyer-Villiger oxidation in H2O2/CH3COOH in a good yield. The cyclic condensation ofbis[2-(o-hydroxyphenoxy)ethyl]etherwith tri- and tetraethylene glycol bisdichlorides andthe bisditosylate of pentaethylene glycol in DMF/Me2CO3 afforded the large cyclic ethers of dibenzo[21]crown-7, dibenzo[24]crown-8 and dibenzo[27]crown-9. The structures were analysed with IR, 1H NMR, 13C NMR and low-resolution mass spectroscopy methods. The Na+, K+, Rb+ and Cs+ cations' recognition of the molecules were conducted withsteady-state fluorescence spectroscopy. The 1:1 association constants, Ka, in acetonitrile were estimated. Dibenzo[21]crown-7 was the best both for K+ and Rb+ binding but showed too small an effect on Cs+. Dibenzo[24]crown-8 exhibited the binding power in the order of Rb+ > K+ > Na+ > Cs+. However, dibenzo[27]crown-9 displayed marked binding with only K+ but not with Rb+ or with Cs+ cations probably due to the heavy atom effect of fluorescence quenching.  相似文献   

20.
The host–guest complexation reactions between 5,11,17,23‐tetra‐tert‐butyl‐25,27‐diethoxycarbonylmethoxy‐26,28‐dimethoxy calix[4]arene (BDDC4) and alkali and alkaline‐earth metal ions were investigated by facilitated ion transfer processes across water/1,2‐dichloroethane microinterface by using steady‐state cyclic voltammetry and differential pulse voltammetry. The obtained facilitated transfers for Li+, Na+, K+, Rb+ and Ca2+ were evaluated under the different experimental conditions, at the excess concentrations of metal ions with respect to BDDC4 and vice versa. The association constants having 1 : 1 stoichiometry for Li+, Na+, K+ and Rb+ in 1,2‐DCE were determined. Also, we demonstrated that BDDC4 can play an important role for the development of highly selective chemical sensor for Ca2+ among alkaline‐metal ions in the concentration range of 0.1–1.0 mM in aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号