首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
An intermediate expressing vector carrying the tobacco mosaic virus (TMV, Chinese common strain) coat protein (CP) gene was constructed by recombinant DNA techniques. The TMV-CP gene was transferred into the tobacco genome via Ti plasmid and a large number of regenerated plants, including both systemic and local lesion hosts for TMV, were obtained. Southern blot analysis revealed that 1-5 copies of the CP gene were integrated into the tobacco genome. RNA and protein analysis demonstrated that the TMV-CP gene was correctly expressed in the transgenic plants. The abundance of TMV-CP mRNA in total leaf RNA accounted for 0.005-0.01%, while the amount of coat proteins reached 0.05-0.2% of the total leaf soluble proteins. Virus challenge experiments showed that the symptom development of virus infection was markedly delayed and the replication as well as the spread of the virus was significantly inhibited in the transgenic plants expressing the TMV-CP gene. Three of these plants were completely protected afte  相似文献   

2.
As a first step in establishing a proteome database for maize, we have embarked on the identification of the leaf proteins resolved on two-dimensional (2-D) gels. We detected nearly 900 spots on the gels with a pH 4-7 gradient and over 200 spots on the gels with a pH 6-11 gradient when the proteins were visualized with colloidal Coomassie blue. Peptide mass fingerprints for 300 protein spots were obtained with matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometer and 149 protein spots were identified using the protein databases. We also searched the pdbEST databases to identify the leaf proteins and verified 66% of the protein spots that had been identified using the protein databases. Sixty-seven additional protein spots were identified from expressed sequence tags (ESTs). Many abundant leaf proteins are present in multiple spots. Functions of over 50% of the abundant leaf proteins are either unknown or hypothetical. Our results show that EST databases in conjunction with peptide mass fingerprints can be used for identifying proteins from organisms with incomplete genome sequence information.  相似文献   

3.
Proteome profiling was performed on Arabidopsis plant exposed to cold stress at 4 ℃ for 24 h in an attempt to explore the mechanisms of plant climate adaptation.The polyethylene glycol(PEG) fractionation protocol developed in this lab was used to identify as many differentially expressed low-abundance proteins as possible.In comparison with those of the biological controls,67 protein spots with at least two-fold difference in expression were identified for the plant exposed to cold temperatures; and from these spots,50 proteins were successfully identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry(MALDI-TOF MS).Bioinformatics studies on these proteins show that 57.8% of these proteins were localized in the chloroplast.Of these proteins,8 ones have functions in photosynthesis,including glycine hydroxymethyltransferase,Rubisco large subunit,Rubisco activase,PSBO2,fructose-1,6-bisphosphate aldolase,NADP-dependent malate dehydrogenase,sedoheptulose bisphosphatase and photosystem Ⅱ reaction center PsbP family protein,suggesting that photosynthesis is greatly affected by cold stress.The identified proteins were validated by quantitative real-time polymerase chain reaction(qPCR).Taken together,our results suggest that the chloroplast might also act as a cold stress sensor and that photosynthesis-related proteins may play important roles in cold acclimation for Arabidopsis.  相似文献   

4.
Proteomic projects are often focused on the discovery of differentially expressed proteins between control and experimental samples. Most laboratories choose the approach of running two-dimensional (2-D) gels, analyzing them and identifying the differentially expressed proteins by in-gel digestion and mass spectrometry. To date, the available stains for visualizing proteins on 2-D gels have been less than ideal for these projects because of poor detection sensitivity (Coomassie blue stain) or poor peptide recovery from in-gel digests and mass spectrometry (silver stain), unless extra destaining and washing steps are included in the protocol. In addition, the limited dynamic range of these stains has made it difficult to rigorously and reliably determine subtle differences in protein quantities. SYPRO Ruby Protein Gel Stain is a novel, ruthenium-based fluorescent dye for the detection of proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels that has properties making it well suited to high-throughput proteomics projects. The advantages of SYPRO Ruby Protein Gel Stain relative to silver stain demonstrated in this study include a broad linear dynamic range and enhanced recovery of peptides from in-gel digests for matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry.  相似文献   

5.
The fluorescent sensitive SYPRO Red dye was successfully employed to stain proteins in two-dimensional gels for protein identification by peptide mass fingerprinting. Proteins which are not chemically modified during the SYPRO Red staining process are well digested enzymatically in the gel and hence the resulting peptides can be efficiently eluted and analysed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). A SYPRO Red two-dimensional gel of a complex protein extract from Candida albicans was analysed by MALDI-TOF MS. The validity of SYPRO Red staining was demonstrated by identifying, via peptide mass fingerprinting, 10 different C. albicans proteins from a total of 31 selected protein spots. The peptide mass signal intensity, the number of matched peptides and the percentage of coverage of protein sequences from SYPRO Red-stained proteins were similar to or greater than those obtained in parallel with the modified silver protein gel staining. This work demonstrates that fluorescent SYPRO Red staining is compatible with the identification of proteins separated on polyacrylamide gel and that it can be used as an alternative to silver staining. As far as we know, this is the first report in which C. albicans proteins separated using 2-D gels have been identified by peptide mass fingerprinting. The improved technique described here should be very useful for carrying out proteomic studies.  相似文献   

6.
Postoperative early kinesitherapy has been advocated as an optimal method for treating Achilles tendon rupture. However, an insight into the rationale of how early kinesitherapy contributes to healing of Achilles tendon remains to be achieved, and research in the area of proteomic analysis of Achilles tendon has so far been lacking. Forty-two rabbits were randomized into control group, immobilization group, and early motion group, and received postoperative cast immobilization and early motion treatments. Achilles tendon samples were prepared 21 days following microsurgery, and the proteins were separated with two-dimensional polyacrylamide gel electrophoresis. Differentially expressed proteins were first recognized by PDQuest software, and then identified using peptide mass fingerprinting, tandem mass spectrometry, and database searching. A total of 463 ± 12, 511 ± 39, and 513 ± 80 protein spots were successfully detected in the two-dimensional polyacrylamide gels for the Achilles tendon samples of rabbits in the control group, immobilization group, and early motion group, respectively. There were 15, 8, and 9 unique proteins in these three groups, respectively, and some differentially expressed proteins were also identified in each group. It was indicated that some of the differentially expressed proteins were involved in various metabolism pathways and may play an important role in healing of Achilles tendon rupture. Postoperative early kinesitherapy resulted in differentially expressed proteins in ruptured Achilles tendon compared with those treated with postoperative cast immobilization. These differentially expressed proteins may contribute to healing of Achilles tendon rupture through a mechanobiological mechanism due to the application of postoperative early kinesitherapy.  相似文献   

7.
Jin Y  Manabe T 《Electrophoresis》2007,28(3):449-459
Previously, we have reported a high-efficiency method of protein extraction from CBB-stained polyacrylamide gels for molecular mass measurement with MALDI-TOF MS [1]. In the present work, the alkaline extraction method was applied to CBB-stained 2-DE gels on which human plasma proteins were separated in the absence of denaturant. In order to examine the performance of the method, ten spots with apparent molecular masses (MMapp) in the range of 65 to 1000 kDa were selected and the proteins were extracted from the gel pieces. The extracts were subjected to whole-mass measurement by MALDI-TOF MS, with and without DTT treatment. In addition, the extracts were subjected to in-solution trypsin digestion followed by MALDI-TOF MS and PMF analysis. Successful extraction of proteins from the ten spots, up to MMapp 1000 kDa, has been ascertained by the significant PMF assignment (MASCOT) with high sequence coverage of the respective proteins or polypeptides. When direct mass measurement of the extracted proteins was attempted, three spots in MMapp range 65-100 kDa provided mass peaks. Five spots in MMapp range 150-400 kDa did not give mass peaks of the intact proteins, but showed those of the constituent polypeptides after the DTT treatment. Extraction of proteins prior to trypsin digestion enabled the procedure of PMF analysis to be much simpler than the conventional in-gel digestion method, providing comparable protein scores and sequence coverage. The technique presented here suggests a new strategy for the characterization of proteins separated by nondenaturing 2-DE.  相似文献   

8.
Optimal application of biological mass spectrometry (MS) in combination with two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) of human cerebrospinal fluid (CSF) can lead to the identification of new potential biological markers of neurological disorders. To this end, we analyzed a number of 2-D PAGE protein spots in a human CSF pool using spot co-localization, N-terminal sequencing, matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) and nanoliquid chromatography-electrospray ionization-time of flight-mass spectrometry (nanoLC-ESI-TOF-MS) with tandem MS switching. Our constructed CSF master contained 469 spots after image analysis and processing of 2-D gels. Upon visual inspection of our CSF master with the CSF pattern available on the ExPASy server, it was possible to locate and annotate 15 proteins. N-terminal sequence analysis and MALDI-MS peptide mass fingerprint analysis of both silver- and Coomassie Brilliant Blue (CBB) G-250-stained protein spots after in situ trypsin digest not only confirmed nine of the visually annotated spots but additionally resolved the identity of another 13 spots. Six of these proteins were not annotated on the 2-D ExPASy map: complement C3 alpha-chain (1321-1663), complement factor B, cystatin C, calgranulin A, hemoglobin beta-chain, and beta-2-microglobulin. It was clear that MALDI-MS identification from CBB G-250-stained, rather than from silver-stained, spots was more successful. In cases where no N-terminal sequence and/or no clear MALDI-MS result was available, nanoLC-ESI-TOF-MS and tandem MS automated switching was used to clarify and/or identify these protein spots by generating amino acid sequence tags. In addition, enrichment of the concentration of low-abundant proteins on 2-D PAGE was obtained by removal of albumin and immunoglobulins from the CSF pool using affinity chromatography. Subsequent analysis by 2-D PAGE of the fractionated CSF pool showed various new silver-stainable protein spots, of which four were identified by nanoLC-ESI-TOF-MS and tandem MS switching. No significant homology was found in either protein or DNA databases, indicating than these spots were unknown proteins.  相似文献   

9.
Sudden death syndrome (SDS) is a complex of two diseases of soybean (Glycine max), caused by the soil borne pathogenic fungus Fusarium virguliforme. The root rot and leaf scorch diseases both result in significant yield losses worldwide. Partial SDS resistance has been demonstrated in multiple soybean cultivars. This study aimed to highlight proteomic changes in soybean roots by identifying proteins which are differentially expressed in near isogenic lines (NILs) contrasting at the Rhg1/Rfs2 locus for partial resistance or susceptibility to SDS. Two-dimensional gel electrophoresis resolved approximately 1000 spots on each gel; 12 spots with a significant (P < 0.05) difference in abundance of 1.5-fold or more were picked, trypsin-digested, and analyzed using quadruple time-of-flight tandem mass spectrometry. Several spots contained more than one protein, so that 18 distinct proteins were identified overall. A functional analysis performed to categorize the proteins depicted that the major pathways altered by fungal infection include disease resistance, stress tolerance, and metabolism. This is the first report which identifies proteins whose abundances are altered in response to fungal infection leading to SDS. The results provide valuable information about SDS resistance in soybean plants, and plant partial resistance responses in general. More importantly, several of the identified proteins could be good candidates for the development of SDS-resistant soybean plants.  相似文献   

10.
应用蛋白质组学双向凝胶电泳(Two-dimensional gel electrophoresis, 2DE)和质谱技术, 定量分析和鉴定了癫痫组(n=3)和正常组(n=3)脑组织的差异表达蛋白, 以从蛋白质水平上揭示癫痫病的发机制. 结果表明, 凝胶图谱可辨识2500~3000个蛋白点, 对21个显著差异表达蛋白点进行质谱鉴定和SwissProt数据库检索, 得到17个癫痫差异蛋白, 其中2个蛋白在癫痫组织中表达上调, 15个蛋白表达下调. 部分蛋白与癫痫的关系属首次报道. 这些蛋白与癫痫的发生发展相关, 可能成为癫痫的分子标志物和药物治疗的靶向蛋白.  相似文献   

11.
Ha GH  Lee SU  Kang DG  Ha NY  Kim SH  Kim J  Bae JM  Kim JW  Lee CW 《Electrophoresis》2002,23(15):2513-2524
Two-dimensional gel electrophoresis (2-DE) maps for human stomach tissue proteins have been prepared by displaying the protein components of the tissue by 2-DE and identifying them using mass spectrometry. This will enable us to present an overview of the proteins expressed in human stomach tissues and lays the basis for subsequent comparative proteome analysis studies with gastric diseases such as gastric cancer. In this study, 2-DE maps of soluble fraction proteins were prepared on two gel images with partially overlapping pH ranges of 4-7 and 6-9. On the gels covering pH 4-7 and pH 6-9, about 900 and 600 protein spots were detected by silver staining, respectively. For protein identification, proteins spots on micropreparative gels stained with colloidal Coomassie Brilliant Blue G-250 were excised, digested in-gel with trypsin, and analyzed by peptide mass fingerprinting with delayed extraction-matrix assisted laser desorption/ionization-mass spectrometry (DE-MALDI-MS). In all, 243 protein spots (168 spots in acidic map and 75 spots in basic map) corresponding to 136 different proteins were identified. Besides these principal maps, overview maps (displayed on pH 3-10 gels) for total homogenate and soluble fraction, are also presented with some identifications mapped on them. Based on the 2-DE maps presented in this study, a 2-DE database for human stomach tissue proteome has been constructed and is available at http://proteome.gsnu.ac.kr/DB/2DPAGE/Stomach/. The 2-DE maps and the database resulting from this study will serve important resources for subsequent proteomic studies for analyzing the normal protein variability in healthy tissues and specific protein variations in diseased tissues.  相似文献   

12.
The identification of proteins differentially expressed between cancer and normal cells is vital for the development of cancer diagnostics, therapeutics and vaccines. Using a ProteinChip Biomarker System (Ciphergen Biosystems, Fremont, CA) which combines ProteinChip technology with time-of-flight mass spectrometry, we have developed a simple method to screen and identify differentially secreted proteins from tumor cell lines. Mass spectra of the range of proteins secreted from normal B-cells were generated along with those secreted from Epstein-Barr virus transformed B-cells. A mass peak at m/z = 4972.1 that was highly over-represented in the transformed B-cell line was chosen for identification and purified by reversed phase chromatography with concomitant monitoring of fractions by SELDI-TOF MS. The resulting purified protein was digested with trypsin and the peptide masses derived from the SELDI-TOF spectrum were used to search the public databases for protein identification. Fragment matching of the resulting peptides identified the protein as thymosin beta-4. Using LC-electrospray ionization MS/MS, the identity of this protein was confirmed. Thymosin beta-4 is a known marker in LCLs establishing the utility of this method to discover and identify proteins differentially expressed between cancers and their matched normal counterparts.  相似文献   

13.
14.
Endoplasmic reticulum (ER) has been prepared and analysed from germinating and developing castor bean endosperm. A combination of one- and two-dimensional (1-D and 2-D) gel electrophoresis was used to study the complexity of sample and protein differences between the two stages. The ER of the developing oilseed is central to the synthesis, sorting and storage of protein and lipid reserves while the germinating seed is concerned with their degradation. Sample complexity has been reduced by separation of ER proteins into lumenal, peripheral membrane and integral membrane subfractions. Membrane proteins pose specific problems in aggregation and binding to passive surfaces. We have overcome this by collection of membranes at density gradient interfaces and by silanization of plastic ware. Several major components have been identified from 1-D gels by N-terminal sequencing and matrix-assisted laser desorption/ionization (MALDI) peptide mass fingerprints. These include protein disulphide isomerase (PDI), calreticulin and developing-ER-specific oleate-12-hydroxylase involved in the biosynthesis of ricinoleic acid. In excess of 300 spots are detectable in each developmental fraction by high sensitivity 2-D gels. This is the first 2-D electrophoretic analysis of plant ER. These gels reveal significant differences between germinating and developing ER. Preparative loading 2-D gels of germinating ER have been run and 14 selected spots characterized by quadrupole time of flight tandem mass spectrometry (Q-TOF MS/MS). Ten of these proteins were assigned function on the basis of identity with existing castor database entries, or by homology with other species. Two proteins, aspartate proteinase precursor and N-carbamyl-L-aminohydrolase-like protein, appear to be absent from developing profiles. Most of the proteins identified are concerned with roles in protein processing and storage, and lipid metabolism which occur in the ER. Data from three of the assigned spots included unidentified peptides indicating the presence of more than one protein in these spots following 2-D electrophoresis. More extensive analysis will have to await developments in genomics but the basic separation technologies to simplify sample identity for a plant ER preparation have been established.  相似文献   

15.
The potential biomarkers for the lymphatic metastatic process of mouse hepatocarcinoma were investigated by using two-dimensional difference in-gel electrophoresis (2D DIGE), high-performance liquid chromatography/nano-electrospray ionization tandem mass spectrometry (HPLC/nESI-MS/MS) and GeneChip. 2D DIGE was performed to screen and quantify the differentially expressed proteins between two well-established mouse hepatocarcinoma cell lines, Hca-F with 75% and Hca-P with 25% metastasis rate of lymph node potentials. The protein spots in the gel were visualized by the highly sensitive Deep Purple (GE Healthcare) fluorescent stain. Protein identification was obtained for gel spots by HPLC/nESI-MS/MS analysis with high quality. GeneChip microarray was performed to identify genes differentially expressed at the mRNA level. Seventeen genes including the chloride intracellular channel l, caspase 3, fructose bisphosphatase 2, glutamate dehydrogenase 1, V-crk sarcoma virus CT10 oncogene homolog, N-myc downstream regulated gene1, villin2, gelsolin, enoyl coenzyme A hydratase 1, transketolase, vimentin, annexins A5 and A7, keratin complex2 basic gene7 and gene8, lactamase (bata 2) and Ero1-like protein were found abnormally regulated and expressed concordantly both at the protein and mRNA levels between the two cell lines. More than half of these genes were for the first time revealed to be involved directly in hepatocarcinoma due to the lymphatic metastasis. The interdisciplinary combination of HPLC/nESI-MS/MS with 2D DIGE and GeneChip techniques opens up the possibility for the biomarker discovery of disease with high confidence.  相似文献   

16.
HeLa cells are widely used for all kinds of in vitro studies in biochemistry, biology and medicine. Knowledge on protein expression is limited and no comprehensive study on the proteome of this cell type has been reported so far. We applied proteomics technologies to analyze the proteins of the HeLa cell line. The proteins were analyzed by two-dimensional (2D) gel electrophoresis and identified by matrix-assisted laser desorption ionization mass spectrometry (MS) on the basis of peptide mass fingerprinting, following in-gel digestion with trypsin. Approximately 3000 spots, excised from six two-dimensional gels, were analyzed. The analysis resulted in the identification of about 1200 proteins that were the products of 297 different genes. The HeLa cell database includes proteins with important functions and unknown functions, representing today one of the largest two-dimensional databases for eukaryotic proteomes and forming the basis for future expressional studies at the protein level.  相似文献   

17.
In terms of proteomic research in the 21st century, the realm of virology is still regarded as an enormous challenge mainly brought by three aspects, namely, studying on the complex proteome of the virus with unexpected variations, developing more accurate analytical techniques as well as understanding viral pathogenesis and virus–host interaction dynamics. Progresses in these areas will be helpful to vaccine design and antiviral drugs discovery. Mass spectrometry based proteomics have shown exceptional display of capabilities, not only precisely identifying viral and cellular proteins that are functionally, structurally, and dynamically changed upon virus infection, but also enabling us to detect important pathway proteins. In addition, many isolation and purification techniques and quantitative strategies in conjunction with MS can significantly improve the sensitivity of mass spectrometry for detecting low-abundant proteins, replenishing the stock of virus proteome and enlarging the protein–protein interaction maps. Nevertheless, only a small proportion of the infectious viruses in both of animal and plant have been studied using this approach. As more virus and host genomes are being sequenced, MS-based proteomics is becoming an indispensable tool for virology. In this paper, we provide a brief review of the current technologies and their applications in studying selected viruses and hosts.  相似文献   

18.
Mass spectrometry (MS) together with genome database searches serves as a powerful tool for the identification of proteins. In proteome analysis, mixtures of cellular proteins are usually separated by sodium dodecyl sulfate (SDS) polyacrylamide gel-based two-dimensional gel electrophoresis (2-DE) or one-dimensional gel electrophoresis (1-DE), and in-gel digested by a specific protease. In-gel protein digestion is one of the critical steps for sensitive protein identification by these procedures. Efficient protein digestion is required for obtaining peptide peaks necessary for protein identification by MS. This paper reports a remarkable improvement of protein digestion in SDS polyacrylamide gels using an acid-labile surfactant, sodium 3-[(2-methyl-2-undecyl-1,3-dioxolan-4-yl)methoxy]-1-propanesulfonate (ALS). Pretreatment of gel pieces containing protein spots separated by 2-DE with a small amount of ALS prior to trypsin digestion led to increases in the digested peptides eluted from the gels. Consistently, treatment of gel pieces containing silver-stained standard proteins and those separated from tissue extracts resulted in the detection of increased numbers of peptide peaks in spectra obtained by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOFMS). Hence the present protocol with ALS provides a useful strategy for sensitive protein identification by MS.  相似文献   

19.
Wheat allergens are responsible for symptoms in 60–70% of bakers with work-related allergy, and knowledge, at the molecular level, of this disorder is progressively accumulating. The aim of the present study is to investigate the panel of wheat IgE positivity in allergic Italian bakers, evaluating a possible contribution of novel wheat allergens included in the water/salt soluble fraction. The water/salt-soluble wheat flour proteins from the Italian wheat cultivar Bolero were separated by using 1-DE and 2-DE gel electrophoresis. IgE-binding proteins were detected using the pooled sera of 26 wheat allergic bakers by immunoblotting and directly recognized in Coomassie stained gel. After a preparative electrophoretic step, two enriched fractions were furtherly separated in 2-DE allowing for detection, by Coomassie, of three different proteins in the range of 21–27 kDa that were recognized by the pooled baker’s IgE. Recovered spots were analyzed by nanoHPLC Chip tandem mass spectrometry (MS/MS). The immunodetected spots in 2D were subjected to mass spectrometry (MS) analysis identifying two new allergenic proteins: a glucose/ribitol dehydrogenase and a 16.9 kDa class I heat shock protein 1. Mass spectrometer testing of flour proteins of the wheat cultivars utilized by allergic bakers improves the identification of until now unknown occupational wheat allergens.  相似文献   

20.
The changes of the proteome in Arabidopsis thaliana leaves were examined by specialist Plutella xylostella.Analysis of about 1100 protein spots on each 2DE gel revealed 38 differentially expressed protein spots in abun-dance of which 34 proteins were identified by MALDI-TOF/TOF MS.Among the insect feeding responsive proteins,a few proteins involved in carbon metabolism were identified including proteins associated with the Calvin cycle in the chloroplast and TCA cycle in the mitochondria,indicating carbon metabolism related proteins may play crucial roles in induced defense response in plants under insect infestation.The analysis elucidates the subcellular location of proteins demonstrates that about 50% of proteins are in the chloroplast,which shows the chloroplast has a key role in the insect feeding response for plant.Gene expression analysis of 10 different proteins by quantitative real-time PCR shows that four proteins of the mRNA level were correlated well with the protein level.This study further dissected the nature of insect infestation as a stress signal and some novel insect feeding responsive proteins identified may play an important role in induced defence machanism for plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号