首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apocytochrome c, the in vivo precursor to active cytochrome c, was analyzed by amide hydrogen exchange and mass spectrometry to search for fixed, non-covalent structure. The protein was incubated in H(2)O at pH 3.3 or 6.7 for various times, then exposed to D(2)O to initiate isotope labeling of unfolded regions. Following acid quenching of hydrogen exchange, the labeled apocytochrome c was digested with pepsin into fragments that were analyzed by directly coupled high-performance liquid chromatography/electrospray ionization mass spectrometry. The intermolecular distribution of deuterium and the deuterium levels in structurally distinctive populations were determined from the mass spectra of the peptic fragments. Spectra of peptic fragments derived from apocytochrome c incubated at pH 3.3 had single envelopes of isotope peaks with masses indicating that all of the amide hydrogens had been replaced with deuterium. These results showed that apocytochrome c at pH 3.3 offered little resistance to hydrogen exchange, indicating that it was unfolded with little fixed structure. However, mass spectra of peptic fragments including residues 81-94 of apocytochrome c incubated at pH 6.7 had two envelopes of isotope peaks, indicating that one population was unfolded and the other population was highly structured in this region. Mass spectra of peptic fragments including residues N-terminal to residue 81 indicated that this region of the protein remained unfolded with little fixed structure at pH 6.7.  相似文献   

2.
Proteins that undergo cooperative unfolding events display EX1 kinetic signatures in hydrogen exchange mass spectra. The hallmark bimodal isotope pattern observed for EX1 kinetics is distinct from the binomial isotope pattern for uncorrelated exchange (EX2), the normal exchange regime for folded proteins. Detection and characterization of EX1 kinetics is simple when the cooperative unit is large enough that the isotopic envelopes in the bimodal pattern are resolved in the m/z scale but become complicated in cases where the unit is small or there is a mixture of EX1 and EX2 kinetics. Here we describe a data interpretation method involving peak width analysis that makes characterization of EX1 kinetics simple and rapid. The theoretical basis for EX1 and EX2 isotopic signatures and the effects each have on peak width are described. Modeling of EX2 widening and analysis of empirical data for proteins and peptides containing purely EX2 kinetics showed that the amount of widening attributable to stochastic forward- and back exchange in a typical experiment is small and can be quantified. Proteins and peptides with both obvious and less obvious EX1 kinetics were analyzed with the peak width method. Such analyses provide the half-life for the cooperative unfolding event and the relative number of residues involved. Automated analysis of peak width was performed with custom Excel macros and the DEX software package. Peak width analysis is robust, capable of automation, and provides quick interpretation of the key information contained in EX1 kinetic events.  相似文献   

3.
The unfolding dynamics of cellular retinoic acid-binding protein I (CRABP I), an 18 kDa predominantly beta-sheet protein, were studied by monitoring the hydrogen-deuterium (H-D) exchange reaction under various solution conditions. A bimodal charge state distribution was observed when a denaturing agent was added to the protein aqueous solution. These two populations exhibit different kinetics of H-D exchange, with the high charge state ions undergoing very rapid isotope exchange, while the low charge state protein ions exchange cooperatively but at much slower rates. Transiently populated intermediate states were detected indirectly using hydrogen exchange measurement in aqueous solution at various pHs. At pH 2.5 and room temperature, three distinct populations of CRABP I ions exist over an extended period of time, each corresponding to a specific degree of backbone amide hydrogen atom protection. Mass spectral data are complementary to hydrogen exchange measurements by NMR, since the former samples a much faster time-scale of dynamic events in solution.  相似文献   

4.
The methanol-induced conformational transitions under acidic conditions for beta-lactoglobulin, cytochrome c, and ubiquitin, representing three different classes of proteins with beta-sheets, alpha-helices, and both alpha-helices and beta-sheets, respectively, are studied under equilibrium conditions by electrospray ionization mass spectrometry (ESI-MS). The folding states of proteins in solution are monitored by the charge state distributions that they produce during ESI and by hydrogen/deuterium (H/D) exchange followed by ESI-MS. The changes in charge state distributions are correlated with earlier studies by optical and other methods which have shown that, in methanol, these proteins form partially unfolded intermediates with induced alpha-helix structure. Intermediate states formed at about 35% methanol concentration are found to give bimodal charge state distributions. The same rate of H/D exchange is shown by the two contributions to the bimodal distributions. This suggests the intermediates are highly flexible and may consist of a mixture of two or more rapidly interconverting conformers. H/D exchange of proteins followed by ESI-MS shows that helical denatured states, populated at around 50% methanol concentration, transform into more protected structures with further increases in methanol concentration, consistent with previous circular dicroism studies. These more protected structures still produce high charge states in ESI, similar to those of the fully denatured proteins.  相似文献   

5.
A hallmark of tissue ageing is the irreversible oxidative modification of its proteins. We show that single proteins, kept unfolded and extended by a mechanical force, undergo accelerated ageing in times scales of minutes to days. A protein forced to be continuously unfolded completely loses its ability to contract by folding, becoming a labile polymer. Ageing rates vary among different proteins, but in all cases they lose their mechanical integrity. Random oxidative modification of cryptic side chains exposed by mechanical unfolding can be slowed by the addition of antioxidants such as ascorbic acid, or accelerated by oxidants. By contrast, proteins kept in the folded state and probed over week‐long experiments show greatly reduced rates of ageing. We demonstrate a novel approach whereby protein ageing can be greatly accelerated: the constant unfolding of a protein for hours to days is equivalent to decades of exposure to free radicals under physiological conditions.  相似文献   

6.
Hydrogen exchange mass spectrometry (HXMS) coupled to proteolytic digestion has been used to probe the conformation of bovine β-lactoglobulin (BLG), bovine α-lactalbumin (BLA), and human serum albumin (HSA) in solution and while adsorbed to the hydrophobic interaction chromatography media Phenyl Sepharose 6FF. All three proteins show evidence of EX1 exchange kinetics, indicating a loss of stability on the surface. HX protection patterns for all three proteins also indicate that the unfolded form is only partially solvent exposed. The hydrogen-deuterium exchange patterns of BLG and BLA on the surface suggest a structure that resembles each protein's respective solution phase molten globule state. The low stability of Domain II of HSA observed on Phenyl Sepharose 6FF also suggests a link to solution stability because Domain II is frequently cited as the least stable domain in solution unfolding pathways. COREX, an algorithm used to compute protein folding stabilities, correctly predicts solution hydrogen-deuterium exchange patterns for BLG and offers insight into its adsorbed phase stabilities but is unreliable for BLA predictions. The results of this work demonstrate a link between solution-phase local stability patterns and the nature of partially unfolded states that proteins can adopt on HIC surfaces.  相似文献   

7.
The Trp-cage miniprotein is a 20 amino acid peptide that exhibits many of the properties of globular proteins. In this protein, the hydrophobic core is formed by a buried Trp side chain. The folded state is stabilized by an ion pair between aspartic acid and an arginine side chain. The effect of protonating the aspartic acid on the Trp-cage miniprotein folding/unfolding equilibrium is studied by explicit solvent molecular dynamics simulations of the protein in the charged and protonated Asp9 states. Unbiased Replica Exchange Molecular Dynamics (REMD) simulations, spanning a wide temperature range, are carried out to the microsecond time scale, using the AMBER99SB forcefield in explicit TIP3P water. The protein structural ensembles are studied in terms of various order parameters that differentiate the folded and unfolded states. We observe that in the folded state the root mean square distance (rmsd) from the backbone of the NMR structure shows two highly populated basins close to the native state with peaks at 0.06 nm and 0.16 nm, which are consistent with previous simulations using the same forcefield. The fraction of folded replicas shows a drastic decrease because of the absence of the salt bridge. However, significant populations of conformations with the arginine side chain exposed to the solvent, but within the folded basin, are found. This shows the possibility to reach the folded state without formation of the ion pair. We also characterize changes in the unfolded state. The equilibrium populations of the folded and unfolded states are used to characterize the thermodynamics of the system. We find that the change in free energy difference due to the protonation of the Asp amino acid is 3 kJ mol(-1) at 297 K, favoring the charged state, and resulting in ΔpK(1) = 0.5 units for Asp9. We also study the differences in the unfolded state ensembles for the two charge states and find significant changes at low temperature, where the protonated Asp side chain makes multiple hydrogen bonds to the protein backbone.  相似文献   

8.
Protein folding is important for protein homeostasis/proteostasis in the human body. We have established the ability to manipulate protein unfolding/refolding for β-lactoglobulin using the induced mechanical energy in the thin film microfluidic vortex fluidic device (VFD) with monitoring as such using an aggregation-induced emission luminogen (AIEgen), TPE-MI. When denaturant (guanidine hydrochloride) is present with β-lactoglobulin, the VFD accelerates the denaturation reaction in a controlled way. Conversely, rapid renaturation of the unfolded protein occurs in the VFD in the absence of the denaturant. The novel TPE-MI reacts with exposed cysteine thiol when the protein unfolds, as established with an increase in fluorescence intensity. TPE-MI provides an easy and accurate way to monitor the protein folding, with comparable results established using conventional circular dichroism. The controlled VFD-mediated protein folding coupled with in situ bioprobe AIEgen monitoring is a viable methodology for studying the denaturing of proteins.  相似文献   

9.
The GdmHCl-induced unfolding of creatine kinase (CK) has been studied by hydrogen/deuterium (H/D) exchange combined with mass spectrometry. MM-CK unfolded for various periods in different denaturant concentrations was pulsed-labeled with deuterium to identify different conformational intermediate states. For all denaturation times or GdmHCl concentrations, we observed variable proportions of only two species. The low-mass envelope of isotope peaks corresponds to a species that has gained about 10 deuteriums more than native CK, and the high-mass envelope to a completely deuterated species. To localize precisely the unfolded regions in the states highly populated during denaturation, the protein was digested with two proteases (pepsin and type XIII protease) after H/D exchange and rapid quenching of the reaction. The two sets of fragments obtained were analyzed by liquid chromatography coupled to mass spectrometry to determine the deuterium level in each fragment. Bimodal distributions of deuterium were found for most peptides, indicating that these regions were either folded or unfolded. This behavior is consistent with cooperative, localized unfolding. However, we observed a monomodal distribution of deuterium in two regions (1-12 and 162-186). We conclude that the increment of mass observed in the low-mass species of the intact protein (+10 Da) has its origin in these two segments. These regions, which are very sensitive to low GdmHCl concentrations, are involved in the monomer-monomer interface of CK and their perturbation is likely to weaken the dimeric structure. At higher denaturant concentration, this would induce dissociation of the dimer.  相似文献   

10.
Thermal unfolding (or folding) in many proteins occurs in an apparent two-state manner, suggesting that only two states, unfolded and folded, are populated. At the melting temperature, Tm, the two states coexist. Using lattice models with side chains we show that individual residues become structured at temperatures that deviate from Tm, which implies that partially folded conformations make substantial contribution to thermodynamic properties of two-state proteins. We also find that the folding cooperativity for a given residue is linked to its accessible surface area. These results are consistent with the experiments on GCN4-like zipper peptide, which showed that local melting temperatures differ from Tm. Analysis of thermal unfolding of six proteins shows that deltaT/Tm approximately N(-1), where deltaT is the transition width and N is the number of residues. This scaling allows us to conclude that, when corrected for finite size effects, folding cooperativity can be captured using coarse grained models.  相似文献   

11.
Identifying and understanding the differences between protein folding in bulk solution and in the cell is a crucial challenge facing biology. Using Langevin dynamics, we have simulated intact ribosomes containing five different nascent chains arrested at different stages of their synthesis such that each nascent chain can fold and unfold at or near the exit tunnel vestibule. We find that the native state is destabilized close to the ribosome surface due to an increase in unfolded state entropy and a decrease in native state entropy; the former arises because the unfolded ensemble tends to behave as an expanded random coil near the ribosome and a semicompact globule in bulk solution. In addition, the unfolded ensemble of the nascent chain adopts a highly anisotropic shape near the ribosome surface and the cooperativity of the folding-unfolding transition is decreased due to the appearance of partially folded structures that are not populated in bulk solution. The results show, in light of these effects, that with increasing nascent chain length folding rates increase in a linear manner and unfolding rates decrease, with larger and topologically more complex folds being the most highly perturbed by the ribosome. Analysis of folding trajectories, initiated by temperature quench, reveals the transition state ensemble is driven toward compaction and greater native-like structure by interactions with the ribosome surface and exit vestibule. Furthermore, the diversity of folding pathways decreases and the probability increases of initiating folding via the N-terminus on the ribosome. We show that all of these findings are equally applicable to the situation in which protein folding occurs during continuous (non-arrested) translation provided that the time scales of folding and unfolding are much faster than the time scale of monomer addition to the growing nascent chain, which results in a quasi-equilibrium process. These substantial ribosome-induced perturbations to almost all aspects of protein folding indicate that folding scenarios that are distinct from those of bulk solution can occur on the ribosome.  相似文献   

12.
Understanding the forces driving protein folding and aggregation is an essential step in developing means for controlling these important processes. Amide hydrogen exchange, coupled with mass spectrometry, has become an important method for studying protein unfolding and refolding. To extend procedures developed to study unfolding of relatively soluble proteins to less soluble, aggregation-prone proteins requires special considerations. This publication describes a general strategy developed using yeast transaldolase, which aggregates easily under conditions required to study its unfolding. Results presented here show that reducing the protein concentration to the nanomolar range is essential for managing aggregation of transaldolase. In addition, the present results point to use of relatively high concentrations of denaturants and short incubation times to minimize aggregation. These results also show how amide hydrogen exchange, coupled with mass spectrometry, can be used to study soluble aggregates.  相似文献   

13.
Electrospray mass spectrometric studies in native folded forms of several proteins in aqueous solution have been performed in the positive and negative ion modes. The mass spectra of the proteins show peaks corresponding to multiple charge states of the gaseous protein ions. The results have been analyzed using the known crystal structures of these proteins. Crystal structure analysis shows that among the surface exposed residues some are involved in hydrogen-bonding or salt-bridge interactions while some are free. The maximum positive charge state of the gaseous protein ions was directly related to the number of free surface exposed basic groups whereas the maximum negative charge state was related to the number of free surface exposed acidic groups of the proteins. The surface exposed basic groups, which are involved in hydrogen bonding, have lower propensity to contribute to the positive charge of the protein. Similarly, the surface exposed acidic groups involved in salt bridges have lower propensity to contribute to the negative charge of the protein. Analysis of the crystal structure to determine the maximum charge state of protein in the electrospray mass spectrum was also used to interpret the reported mass spectra of several proteins. The results show that both the positive and the negative ion mass spectra of the proteins could be interpreted by simple consideration of the crystal structure of the folded proteins. Moreover, unfolding of the protein was shown to increase the positive charge-state because of the availability of larger number of free basic groups at the surface of the unfolded protein.  相似文献   

14.
Discontinuous molecular dynamics simulations, together with the protein intermediate resolution model, an intermediate-resolution model of proteins, are used to carry out several microsecond-long simulations and study folding transition and stability of alpha-de novo-designed proteins in slit nanopores. Both attractive and repulsive interaction potentials between the proteins and the pore walls are considered. Near the folding temperature T(f) and in the presence of the attractive potential, the proteins undergo a repeating sequence of folding/partially folding/unfolding transitions, with T(f) decreasing with decreasing pore sizes. The unfolded states may even be completely adsorbed on the pore's walls with a negative potential energy. In such pores the energetic effects dominate the entropic effects. As a result, the unfolded state is stabilized, with a folding temperature T(f) which is lower than its value in the bulk and that, compared with the bulk, the folding rate decreases. The opposite is true in the presence of a repulsive interaction potential between the proteins and the walls. Moreover, for short proteins in very tight pores with attractive walls, there exists an unfolded state with only one alpha-helical hydrogen bond and an energy nearly equal to that of the folded state. The proteins have, however, high entropies, implying that they cannot fold onto their native structure, whereas in the presence of repulsive walls the proteins do attain their native structure. There is a pronounced asymmetry between the two termini of the protein with respect to their interaction with the pore walls. The effect of a variety of factors, including the pore size and the proteins' length, as well as the temperature, is studied in detail.  相似文献   

15.
The folding and aggregation behavior of a pair of oligo(phenylene ethynylene) (OPE) foldamers are investigated by means of UV/Vis absorption and circular dichroism spectroscopy. With identical OPE backbones, two foldamers, 1 with alkyl side groups and 2 with triethylene glycol side chains, manifest similar helical conformations in solutions in n‐hexane and methanol, respectively. However, disparate and competing folding and aggregation processes are observed in alternative solvents. In cyclohexane, oligomer 1 initially adopts the helical conformation, but the self‐aggregation of unfolded chains, as a minor component, gradually drives the folding–unfolding transition eventually to the unfolded aggregate state completely. In contrast, in aqueous solution (CH3OH/H2O) both folded and unfolded oligomer 2 appear to undergo self‐association; aggregates of the folded chains are thermodynamically more stable. In solutions with a high H2O content, self‐aggregation among unfolded oligomers is kinetically favored; these oligomers very slowly transform into aggregates of helical structures with greater thermodynamic stability. The folded–unfolded conformational switch thus takes place with the free (nonaggregated) molecules, and the very slow folding transition is due to the low concentration of molecularly dispersed oligomers.  相似文献   

16.
Conformational changes in proteins and peptides can be initiated by diverse processes. This raises the question how the variation of initiation mechanisms is connected to differences in folding or unfolding processes. In this work structural dynamics of a photoswitchable β‐hairpin model peptide were initiated by two different mechanisms: temperature jump (T‐jump) and isomerization of a backbone element. In both experiments the structural changes were followed by time‐resolved IR spectroscopy in the nanosecond to microsecond range. When the photoisomerization of the azobenzene backbone switch initiated the folding reaction, pronounced absorption changes related to folding into the hairpin structure were found with a time constant of about 16 μs. In the T‐jump experiment kinetics with the same time constant were observed. For both initiation processes the reaction dynamics revealed the same strong dependence of the reaction time on temperature. The highly similar transients in the microsecond range show that the peptide dynamics induced by T‐jump and isomerization are both determined by the same mechanism and exclude a downhill‐folding process. Furthermore, the combination of the two techniques allows a detailed model for folding and unfolding to be presented: The isomerization‐induced folding process ends in a transition‐state reaction scheme, in which a high energetic barrier of 48 kJ mol?1 separates unfolded and folded structures.  相似文献   

17.
Directly observing protein folding in real time using atomic force microscopy (AFM) is challenging. Here the use of AFM to directly monitor the folding of an α/β protein, NuG2, by using low‐drift AFM cantilevers is demonstrated. At slow pulling speeds (<50 nm s?1), the refolding of NuG2 can be clearly observed. Lowering the pulling speed reduces the difference between the unfolding and refolding forces, bringing the non‐equilibrium unfolding–refolding reactions towards equilibrium. At very low pulling speeds (ca. 2 nm s?1), unfolding and refolding were observed to occur in near equilibrium. Based on the Crooks fluctuation theorem, we then measured the equilibrium free energy change between folded and unfolded states of NuG2. The improved long‐term stability of AFM achieved using gold‐free cantilevers allows folding–unfolding reactions of α/β proteins to be directly monitored near equilibrium, opening the avenue towards probing the folding reactions of other mechanically important α/β and all‐β elastomeric proteins.  相似文献   

18.
The FK506-FKBP12 binding-domain of the kinase FRAP (FRB) forms a classic up-down four-helical bundle. The folding pathway of this protein has been investigated using a combination of equilibrium and kinetic studies. The native state of the protein is stable with respect to the unfolded state by some 7 kcal mol(-1) at pH 6.0, 10 degrees C. A kinetic analysis of unfolding and refolding rate constants as a function of chemical denaturant concentration suggests that an intermediate state may be populated during folding at low concentrations of denaturant. The presence of this intermediate state is confirmed by refolding experiments performed in the presence of the hydrophobic dye 8-anilinonaphthalene-1 sulfonate (ANS). ANS binds to the partially folded intermediate state populated during the folding of FRB and undergoes a large change in fluorescence that can be detected using stopped-flow techniques. Analysis of the kinetic data suggests that the intermediate state is compact and it may even be a misfolded species that has to partially unfold before it can reach the transition state. Folding and unfolding rate constants in water are approximately 150-200 s(-1) and 0.005-0.06 s(-1), respectively, at neutral pH and 10 degrees C. The folding of FRB is somewhat slower than for other all-helical proteins, probably as a consequence of the formation of a metastable intermediate state. The folding rate constant in the absence of any populated intermediate can be estimated to be 8800 s(-1). Despite the presence of an intermediate state, which effectively slows folding, the protein still folds rapidly with a half-life of 5 ms at 10 degrees C. The dependence of the rate constants on denaturant concentration indicates that the transition state for folding is compact with some 80% of the surface area exposed in the unfolded state buried in the transition state. Data presented for FRB is compared with kinetic data obtained for other all-helical proteins.  相似文献   

19.
After a brief review of the use of photochemical triggers and heme metal substitution to probe the folding dynamics of cytochrome c, we present new results on the photophysics and photochemistry of folded and unfolded states of the zinc-substituted protein (Zn-cyt c). Our measurements of Zn-cyt c triplet state decay kinetics reveal a systematic isotope effect on lifetimes: the decay in the folded protein (tau(H)2(O) approximately 10 ms) is only modestly affected by isotopically substituted buffers (k(H)2(O)/k(D)2(O) = 1.2), whereas a reduced triplet lifetime (approximately 1.3 ms) and greater isotope effect (1.4) were found for the chemically denatured, fully unfolded protein. The shortest lifetime (0.1-0.4 ms) and greatest isotope effect (1.5) were found for a fully exposed model compound, zinc-substituted N-acetyl-microperoxidase-8 (ZnAcMP8), implying that the unfolded protein provides some protection to the Zn-porphyrin group even under fully denaturing conditions. Further evidence for partial structure in unfolded Zn-cyt c comes from bimolecular quenching experiments using Ru(NH(3))(6)(3+) as an external Zn-porphyrin triplet state quencher. In the presence of quencher, partially unfolded protein at midpoint guanidinium chloride (GdmCl) and urea concentrations exhibits biphasic triplet decay kinetics, a fast component corresponding to an extended, solvent-exposed state (6.6 x 10(8) M(-1) s(-1) in GdmCl, 6.3 x 10(8) M(-1) s(-1) in urea) and a slow component attributable to a compact, relatively solvent-inaccessible, state (5.9 x 10(7) M(-1) s(-1) in GdmCl, 8.6 x 10(6) M(-1) s(-1) in urea). The variation in Zn-porphyrin solvation for the compact states in the two denaturants reveals that the cofactor in the partially unfolded protein is better protected in urea solutions.  相似文献   

20.
Reductive unfolding studies of proteins are designed to provide information about intramolecular interactions that govern the formation (and stabilization) of the native state and about folding/unfolding pathways. By mutating Tyr92 to G, A, or L in the model protein, bovine pancreatic ribonuclease A, and through analysis of temperature factors and molecular dynamics simulations of the crystal structures of these mutants, it is demonstrated that the markedly different reductive unfolding rates and pathways of ribonuclease A and its structural homologue onconase can be attributed to a single, localized, ring-stacking interaction between Tyr92 and Pro93 in the bovine variant. The fortuitous location of this specific stabilizing interaction in a disulfide-bond-containing loop region of ribonuclease A results in the localized modulation of protein dynamics that, in turn, enhances the susceptibility of the disulfide bond to reduction leading to an alteration in the reductive unfolding behavior of the homologues. These results have important implications for folding studies involving topological determinants to obtain folding/unfolding rates and pathways, for protein structure-function prediction through fold recognition, and for predicting proteolytic cleavage sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号