首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

This article is intended to study global asymptotical stability in probability for random impulsive coupled systems on networks with Markovian switching. Two cases are considered. (1) Continuous dynamics are stable while impulses are unstable; (2) impulses are stable while continuous dynamics are unstable. To begin with, based on Lyapunov method as well as graph-theoretic technique, several new stability criteria in two cases are derived, that are, the Lyapunov-type criteria and the coefficients-type criteria. Then main results are used for a class of random impulsive coupled oscillators. Finally, the effectiveness of the obtained results is verified by numerical simulations.  相似文献   

2.
In this paper, we sketch some recent developments in the theory of Lyapunov-type inequalities and present some new results relating to a quasilinear system, special cases of which contain some well-known differential equations such as half-linear and linear equations. Our result generalize the Lyapunov-type inequality given in [18].  相似文献   

3.
Yan Liu  Wenwen Jia 《Applicable analysis》2018,97(11):1983-2000
The stabilization of stochastic coupled systems with time delay and time-varying coupling structure (SCSTT) via feedback control is investigated. We generalize systems with constant coupling structure to the time-varying coupling structure. Combining the graph theory with the Lyapunov method, a systematic method is provided to construct a Lyapunov function for SCSTT, and a Lyapunov-type theorem and a coefficient-type criterion are obtained to guarantee the stabilization in the sense of pth moment exponential stability. Furthermore, theoretical results are applied to analyze the stabilization of stochastic-coupled oscillators with time delay and time-varying coupling structure in order to illustrate the practicability of the results. Finally, two numerical examples are given to illustrate the effectiveness and feasibility of theoretical results.  相似文献   

4.
Ziyan Luo  Naihua Xiu 《Positivity》2010,14(3):481-499
In this paper, we consider the Lyapunov-type linear programming and its dual over symmetric cones. By introducing and characterizing the generalized inverse of Lyapunov operator in Euclidean Jordan algebras, we establish two kinds of Lyapunov-type Farkas’ lemmas to exhibit feasibilities of the corresponding primal and dual programming problems, respectively. As one of the main results, we show that the feasibilities of the primal and dual problems lead to the solvability of the primal problem and zero duality gap under some mild condition. In this case, we obtain that any solution to the pair of primal and dual problems is equivalent to the solution of the corresponding KKT system.  相似文献   

5.
In this paper, we formulate and investigate the synchronization of stochastic coupled systems via feedback control based on discrete-time state observations (SCSFD). The discrete-time state feedback control is used in the drift parts of response system. Combining Lyapunov method with graph theory, the upper bound of duration between two consecutive state observations is provided. And a global Lyapunov function of SCSFD is presented, which derives some sufficient criteria to guarantee the synchronization of drive–response systems in the sense of mean-square asymptotical synchronization. In addition, the theoretical results are applied to stochastic coupled oscillators and second-order Kuramoto oscillators. Finally, two numerical examples are given to verify the effectiveness of the theoretical results.  相似文献   

6.
The Lyapunov-type least-squares problem over symmetric cone is to find the least-squares solution of the Lyapunov equation with a constraint of symmetric cone in the Euclidean Jordan algebra, and it contains the Lyapunov-type least-squares problem over cone of semidefinite matrices as a special case. In this paper, we first give a detailed analysis for the image of Lyapunov operator in the Euclidean Jordan algebra. Relying on these properties together with some characterizations of symmetric cone, we then establish some necessary and?or sufficient conditions for solution existence of the Lyapunov-type least-squares problem. Finally, we study uniqueness of the least-squares solution.  相似文献   

7.
We analyze an example system of four coupled phase oscillators and discover a novel phenomenon that we call a “heteroclinic ratchet”; a particular type of robust heteroclinic network on a torus where connections wind in only one direction. The coupling structure has only one symmetry, but there are a number of invariant subspaces and degenerate bifurcations forced by the coupling structure, and we investigate these. We show that the system can have a robust attracting heteroclinic network that responds to a specific detuning Δ between certain pairs of oscillators by a breaking of phase locking for arbitrary Δ>0 but not for Δ≤0. Similarly, arbitrary small noise results in asymmetric desynchronization of certain pairs of oscillators, where particular oscillators have always larger frequency after the loss of synchronization. We call this heteroclinic network a heteroclinic ratchet because of its resemblance to a mechanical ratchet in terms of its dynamical consequences. We show that the existence of heteroclinic ratchets does not depend on symmetry or number of oscillators but depends on the specific connection structure of the coupled system.  相似文献   

8.
In this paper, we obtain some Lyapunov-type inequalities for a class of higher-order linear differential equations. The results of this paper generalize and improve some earlier results on this topic.  相似文献   

9.
This paper presents several new Lyapunov-type inequalities for a system of first-order nonlinear differential equations. Our results generalize and improve some existing ones.  相似文献   

10.
We consider a simple (1+1)-dimensional model for the Casimir–Polder interaction consisting of two oscillators coupled to a scalar field. We include dissipation in a first-principles approach by allowing the oscillators to interact with heat baths. For this system, we derive an expression for the free energy in terms of real frequencies. From this representation, we derive the Matsubara representation for the case with dissipation. We consider the case of vanishing intrinsic frequencies of the oscillators and show that the contribution from the zeroth Matsubara frequency is modified in this case and no problem with the laws of thermodynamics appears.  相似文献   

11.
In this paper, the homotopy analysis method (HAM) is presented to establish the accurate approximate analytical solutions for multi-degree-of-freedom (MDOF) coupled nonlinear oscillators with fractional derivatives. Approximate limit cycles (LCs) of two systems of the coupled fractional van der Pol (VDP) oscillators and the fractional damped Duffing resonator driven by a fractional VDP oscillator are exampled for illustrating the validity and great potential of the HAM. The presented approach can provide approximate LCs very accurately and efficiently compared with some direct simulation results. This method can keep high accuracy and efficiency for both weakly and strongly nonlinear problems with any given fractional order. Furthermore, it is capable of tracking unstable LCs which cannot be generated by some time-marching numerical algorithm. Based on the obtained results, we analyze effect of different fractional orders, coupling coefficient, and nonlinear coefficient of the coupled equations on amplitudes and frequencies of the LCs.  相似文献   

12.
Lyapunov-type numbers are usually defined for diffeomorphisms with a smooth invariant manifold. We consider here the case of a planar diffeomorphism with an invariant curve that contains spiral points. The limits defining the Lyapunov-type numbers are shown to exist. Numerical results for the delayed logistic map illustrate the analysis.  相似文献   

13.
The stability of the null solution of different systems of differential equations describing the motion of 1-D coupled nonlinear oscillators is discussed. Under certain assumptions we derive some stability results. Specifically, in the case of coupled damped oscillators we obtain asymptotic stability of the null solution (see Theorem 3.1, Example 3.1, and Fig. 2), while in the case of partial lack of damping we only obtain convergence to zero of the solution components corresponding to damped oscillators (see Theorem 4.1, Example 4.1, and Fig. 5). In all cases, including the case of coupled undamped oscillators, we obtain uniform stability of the null solution.  相似文献   

14.
By coupling counter-rotating coupled nonlinear oscillators, we observe a “mixed” synchronization between the different dynamical variables of the same system. The phenomenon of amplitude death is also observed. Results for coupled systems with co-rotating coupled oscillators are also presented for a detailed comparison. Results for Landau–Stuart and Rössler oscillators are presented.  相似文献   

15.
In this paper, we give a generalization of the well-known Lyapunov-type inequality for a class of odd-order differential equations, the result of this paper is new and generalizes some early results on this topic.  相似文献   

16.
A general formula for the computation of the first Liapunov coefficient corresponding to the Hopf bifurcation in a four‐dimensional system of two coupled identical oscillators is performed for two cases. Only bi‐dimensional vectors are involved. Then a model of two coupled demand–supply systems, depending on four parameters is considered. A study of the Hopf bifurcation is done around one of the symmetrical equilibrium, as the parameters vary. The loci in the parameter space of the parameters values corresponding to subcritical, supercritical or degenerated Hopf bifurcation are found. The computation of the Liapunov coefficients is done using the derived formula. Numerical plots emphasizing the existence of different types of limit cycles are developed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
A reaction–diffusion model describing a system of coupled oscillators is constructed and investigated. The oscillators in this study are chemical oscillators that represent an oscillatory heterogeneous catalytic reaction in a granular catalyst layer. The oscillators are arranged serially in the reagent stream and are coupled through the gaseous phase. The dynamic behavior of the system is investigated as a function of the main external parameter — the partial pressure of one of the reagents in the gaseous phase. Existence regions of regular and chaotic oscillations are identified. Synchronization conditions are established for the oscillations in such a chain of coupled chemical oscillators.  相似文献   

18.
Summary We present a simple method of plotting the trajectories of systems of weakly coupled oscillators. Our algorithm uses the time delays between the “firings” of the oscillators. For any system ofn weakly coupled oscillators there is an attracting invariantn-dimensional torus, and the attractor is a subset of this invariant torus. The invariant torus intersects a suitable codimension-1 surface of section at an (n−1)-dimensional torus. The dynamics ofn coupled oscillators can thus be reduced,in principle, to the study of Poincaré maps of the (n−1)-dimensional torus. This paper gives apractical algorithm for measuring then−1 angles on the torus. Since visualization of 3 (or higher) dimensional data is difficult we concentrate onn=3 oscillators. For three oscillators, a standard projection of the Poincaré map onto the plane yields a projection of the 2-torus which is 4-to-1 over most of the torus, making it difficult to observe the structure of the attractor. Our algorithm allows a direct measurement of the 2 angles on the torus, so we can plot a 1-to-1 map from the invariant torus to the “unfolded torus” where opposite edges of a square are identified. In the cases where the attractor is a torus knot, the knot type of the attractor is obvious in our projection.  相似文献   

19.
Summary When several oscillators are coupled together and the parameters of their coupling are varied, the oscillators pass through so-called phase-locked regimes. In physical terms this means that the oscillators tend to synchronize their motion. To describe this phenomenon, we frame the concepts ofpartial phase andphase-locking. A partial phase of a toral flow puts emphasis on how orbits of the flow drift around the torus in some fixed direction. The partial phase is locked if it grows in time along some orbit slower than any linear function. When a toral flow is given by a trigonometric polynomial, its phase-locked regions are quite narrow. With the coupling amplitude increasing, each region grows in width as some power of the amplitude. That power can be calculated in terms of both the partial phase and degree of the trigonometric polynomial.  相似文献   

20.
In this paper, we obtain some new Lyapunov-type inequalities for a class of higher-order linear differential equations with anti-periodic boundary value condition, the results of this paper are new and generalize and improve some early results in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号