首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A detailed theoretical and experimental treatment is given for gradient-enhanced heteronuclear correlation spectroscopy. Both multiple-quantum and single-quantum sequences are described. In addition to a comparison with conventional experiments using phase cycling, the effects of different gradient combinations are examined with respect to artifacts occurring in the heteronuclear dimension. The influence of gradient performance and diffusion on sensitivity is discussed. Approaches to attain phase-sensitive spectra are also analyzed.  相似文献   

2.
Recently we introduced a radiofrequency pulse scheme for heteronuclear dipolar decoupling in solid-state nuclear magnetic resonance under magic-angle spinning [R.S. Thakur, N.D. Kurur, P.K. Madhu, Swept-frequency two-pulse phase modulation for heteronuclear dipolar decoupling in solid-state NMR, Chem. Phys. Lett. 426 (2006) 459-463]. Variants of this sequence, swept-frequency TPPM, employing frequency modulation of different types have been further tested to improve the efficiency of heteronuclear dipolar decoupling. Among these, certain sequences that were found to perform well at lower spinning speeds are demonstrated here on a liquid-crystal sample of MBBA for application in static samples. The new sequences are compared with the standard TPPM and SPINAL schemes and are shown to perform better than them. These modulated schemes perform well at low decoupler radiofrequency power levels and are easy to implement on standard spectrometers.  相似文献   

3.
We present a simple experimental method to extract the van Vleck second moment of a multiple-spin system under high-resolution condition. The idea is to incorporate a double-quantum (DQ) filter into the pulse sequence of heteronuclear correlation spectroscopy so that a DQ excitation profile can be obtained by measuring a series of 2D spectra. The effects of spinning frequency and proton decoupling are demonstrated on the measurements of two model compounds, viz. hydroxyapatite and brushite. Based on the results obtained for the model compounds, the P-31 homonuclear second moment of the apatite component in rat dentin is characterized. The method is generally suited for the study of bone, enamel and dentin.  相似文献   

4.
A new two-dimensional scheme is proposed for accurate measurements of high-resolution chemical shifts and heteronuclear dipolar couplings in NMR of aligned samples. Both the (1)H chemical shifts and the (1)H-(15)N dipolar couplings are evolved in the indirect dimension while the (15)N chemical shifts are detected. This heteronuclear correlation (HETCOR) spectroscopy yields high-resolution (1)H chemical shifts split by the (1)H-(15)N dipolar couplings in the indirect dimension and the (15)N chemical shifts in the observed dimension. The advantages of the HETCOR technique are illustrated for a static (15)N-acetyl-valine crystal sample and a (15)N-labeled helical peptide sample aligned in hydrated lipid bilayers.  相似文献   

5.
A variant of the solid-state wideline heteronuclear NMR correlation experiment is described which overcomes some of the drawbacks associated with the routine experiment. The modified experiment results in spectra which are sign-discriminated in the omega(1) dimension, but without the loss in sensitivity expected for a standard hypercomplex implementation. In favorable cases sensitivity enhancements over comparable routine experiments are obtained. As well as these advantages, the method retains the selectivity of modified WISE experiments proposed previously which give spectra containing correlations between directly bonded nuclei only.  相似文献   

6.
A new approach for high-resolution solid-state heteronuclear multiple-quantum MAS NMR spectroscopy of dipolar-coupled spin-12 nuclei is introduced. The method is a heteronuclear chemical shift correlation technique of abundant spins, like 1H with rare spins, like 13C in natural abundance. High resolution is provided by ultra-fast MAS and high magnetic fields, high sensitivity being ensured by a direct polarization transfer from the abundant protons to 13C. In a rotor-synchronized variant, the method can be used to probe heteronuclear through-space proximities, while the heteronuclear dipolar coupling constant can quantitatively be determined by measuring multiple-quantum spinning-sideband patterns. By means of recoupling, even weak heteronuclear dipolar interactions are accessible. The capabilities of the technique are demonstrated by measurements on crystalline L-tyrosine hydrochloride salt.  相似文献   

7.
A solid-state nuclear magnetic resonance (NMR) experiment, which provides high-resolution two-dimensional heteronuclear correlation (HETCOR) spectra between 27Al and 31P, is described. The first part of the experiment uses triple-quantum or quintuple-quantum magic-angle spinning (MQMAS) NMR of spin-5/2 nuclei (27Al) to produce an isotropic echo that is unaffected by the second-order quadrupolar broadening. The magnetization is then transferred to the spin-1/2 (31P) nuclei via cross-polarization (CP), resulting in isotropic resolution in both spectral dimensions. To illustrate its usefulness, this method (referred to as MQHETCOR) is applied to two important microporous framework aluminophosphates, hydrated VPI-5 and AIPO4-40.  相似文献   

8.
In this article, we show the potential for utilizing proton-detected heteronuclear single quantum correlation (HSQC) NMR in rigid solids under ultra-fast magic angle spinning (MAS) conditions. The indirect detection of carbon-13 from coupled neighboring hydrogen nuclei provides a sensitivity enhancement of 3- to 4-fold in crystalline amino acids over direct-detected versions. Furthermore, the sensitivity enhancement is shown to be significantly larger for disordered solids that display inhomogeneously broadened carbon-13 spectra. Latrodectus hesperus (Black Widow) dragline silk is given as an example where the sample is mass-limited and the sensitivity enhancement for the proton-detected experiment is 8- to 13-fold. The ultra-fast MAS proton-detected HSQC solid-state NMR technique has the added advantage that no proton homonuclear decoupling is applied during the experiment. Further, well-resolved, indirectly observed carbon-13 spectra can be obtained in some cases without heteronuclear proton decoupling.  相似文献   

9.
The biselective spin echo technique allows the signals of coupled proton pairs to be extracted from crowded liquid state proton NMR spectra. Its use as a preparation sequence in heteronuclear chemical shift correlation experiments requires the removal of the heteronuclear coupling interaction during the biselective echo time. The discrimination between coupled and uncoupled protons signals is achieved by double quantum filtration, which delivers antiphase magnetization states. The latter are not directly compatible with the design of an HSQC-like pulse sequence. The conversion of antiphase to in-phase magnetization states by a second biselective echo sequence solves this problem. The optimization of spin echo delays is also discussed. Lastly, the article presents modified HSQC and HMBC pulses sequences in which information is obtained solely for the biselectively selected proton pairs. A peracetylated trisaccharide was used as a test molecule.  相似文献   

10.
Enhanced versions of heteronuclear chemical shift correlation experiments which yield high-quality spectra with efficient suppression of extra peaks arising from strong coupling effects are proposed. The enhanced pulse sequences feature properly designed filtering schemes inserted during preparation, or prior to acquisition, or at both places depending on the particular experiment. These modifications extend the applicability of existing methods, since they exclude misinterpretation of spurious peaks and allow unambiguous assignment of the desired correlations. The general applicability of the filtering method is noteworthy; both scalar- and dipolar-correlated experiments with both X and 1H detection using phase cycling or gradient pulses for coherence selection can be freed of strong coupling artifacts.  相似文献   

11.
A new pulse sequence, long-range CPMG-adjusted heteronuclear single quantum coherence (LR-CAHSQC), is proposed for the determination of long-range JCH coupling constants from a long-range 1H-13C correlation experiment. The long-range heteronuclear coupling constants can be directly extracted from COSY-type antiphase peak patterns. The current approach utilizes CPMG-sequences for polarization transfer, and thus avoids the evolution of homonuclear JHH couplings, which normally may introduce abnormalities into the cross peak pattern. The differences between LR-CAHSQC and normal LR-HSQC are discussed.  相似文献   

12.
Two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy has been proven to be a powerful technique for chemical, biological, and medical studies. Heteronuclear single quantum correlation (HSQC) and heteronuclear multiple bond correlation (HMBC) are two frequently used 2D NMR methods. In combination with spatially encoded techniques, a heteronuclear 2D NMR spectrum can be acquired in several seconds and may be applied to monitoring chemical reactions. However, it is difficult to obtain high-resolution NMR spectra in inhomogeneous fields. Inspired by the idea of tracing the difference of precession frequencies between two different spins to yield high-resolution spectra, we propose a method with correlation acquisition option and J-resolved-like acquisition option to ultrafast obtain high-resolution HSQC/HMBC spectra and heteronuclear J-resolved-like spectra in inhomogeneous fields.  相似文献   

13.
The L3 data on Bose–Einstein correlations of equally charged pion pairs produced in hadronic Z decays are analyzed in terms of various parametrizations. Preliminary results are presented here.  相似文献   

14.
A high resolution two-dimensional solid state NMR experiment is presented that correlates half-integer quadrupolar spins with protons. In this experiment the quadrupolar nuclei evolve during t1 under a split-t1, FAM-enhanced MQMAS pulse scheme. After each t1 period ending at the MQMAS echo position, single quantum magnetization is transferred, via a cross polarization process in the mixing time, from the quadrupolar nuclei to the protons. High-resolution proton signals are then detected in the t2 time domain during wPMLG5* homonuclear decoupling. The experiment has been demonstrated on a powder sample of sodium citrate and 23Na-1H 2D correlation spectra have been obtained. From the HETCOR spectra and the regular MQMAS spectrum, the three crystallographically inequivalent Na+ sites in the asymmetric unit were assigned. This MQMAS-wPMLG HETCOR pulse sequence can be used for spectral editing of half-integer quadrupolar nuclei coupled to protons.  相似文献   

15.
A two-dimensional (13)C/(14)N heteronuclear multiple quantum correlation (HMQC) experiment using dipolar recoupling under magic-angle spinning (MAS) is described. The experiment is an extension of the recent indirect (13)C detection scheme for measuring (14)N quadrupolar coupling under MAS. The recoupling allows the direct use of the much larger dipolar interaction instead of the small J and residual dipolar couplings for establishing (13)C/(14)N correlations. Two recoupling methods are incorporated into the HMQC sequence, both applying rf only to the observed (13)C spin. The first one uses the REDOR sequence with two pi-pulses per rotor cycle. The second one uses a cw rf field matching the spinning frequency, known as rotary resonance. The effects of CSA, T(2)(') signal loss, MAS frequency and stability and t(1)-noise are compared and discussed.  相似文献   

16.
ZnO and Pd-doped ZnO photocatalysts with different molar ratio of Pd/Zn (1/100, 2/100, 3/100 and 4/100) were prepared by a sol-gel method. The photocatalysts prepared were characterized by BET surface area, X-ray diffraction (XRD), UV/vis diffuse reflectance (DRS) and surface photovoltage spectroscopy (SPS), respectively. The results show that doping Pd into ZnO decreases the BET surface area. The XRD spectra of the Pd-doped ZnO catalysts calcined at 773 K show only the characteristic peaks of wurtzite-type. Doping Pd into ZnO increases the absorbance of ZnO in visible region and enhances the photoinduced charge separation rate. The photocatalytic activity of Pd-doped ZnO photocatalysts for decolorization of methyl orange (MO) solution was evaluated, of all the photocatalysts prepared, the Pd-doped ZnO with 3/100 possesses the best photocatalytic activity. The results of further experiments show that increased adsorption ability of light and high separation rate of photoinduced charge carriers all play an important role in promotion of photocatalytic activity of Pd-doped ZnO nanostructure.  相似文献   

17.
The intensity of the carbon signal in a CPMAS experiment has been measured for two CH and three CH(2) moieties in four test molecules under different phase-modulated proton decoupling conditions and as a function of the spinning rate. The proton decoupling schemes investigated were the golden standard TPPM and three of the GTn family. Aim of this analysis was to better describe experimentally the impact and limitations of phase-modulated decoupling. Sizeable differences in the response to decoupling were observed in otherwise chemically identical molecular fragments, such as the CHCH(2) found in tyrosine, phenyl-succinic acid or 9-Anthrylmethyl-malonate, probably due to differences in spin-diffusion rates. In keeping with known facts, the efficiency of the decoupling was observed to decrease with the MAS rate, but with somewhat different trends for the tested systems.  相似文献   

18.
Photoassociation of ultracold heteronuclear 6Li7Li molecules is observed inside a combined magneto-optical trap for 6Li and 7Li. The trapped atomic cloud is illuminated by a tunable single-mode laser and the number of trapped 7Li atoms is monitored by absorption spectroscopy. Characteristic hyperfine resolved spectra have been recorded for singlet spin orientation. Interesting saturation effects have been observed. Received: 12 July 2001 / Revised version: 1 October 2001 / Published online: 23 November 2001  相似文献   

19.
Measurements of multiple-bond 13C-)H coupling constants are of great interest for the assignment of nonprotonated 13C resonances and the elucidation of molecular conformation in solution. Usually, the heteronuclear multiple-bond coupling constants were measured either by the J(CH) splittings mostly in selective 2D spectra or in 3D spectra, which are time consuming, or by the cross peak intensity analysis in 2D quantitative heteronuclear J correlation spectra (1994, G. Zhu, A. Renwick, and A. Bax, J. Magn. Reson. A 110, 257; 1994, A. Bax, G. W. Vuister, S. Grzesiek, F. Delaglio, A. C. Wang, R. Tschudin, and G. Zhu, Methods Enzymol. 239, 79.), which suffer from the accuracy problem caused by the signal-to-noise ratio and the nonpure absorptive peak patterns. Concerted incrementation of the duration for developing proton antiphase magnetization with respect to carbon-13 and the evolution time for proton chemical shift in different steps in a modified INEPT pulse sequence provides a new method for accurate measurements of heteronuclear multiple-bond coupling constants in a single 2D experiment.  相似文献   

20.
A new through-bond carbon-proton correlation technique, the MAS-J-HSQC experiment, is described for solid-state NMR. This new pulse scheme is compared experimentally with the previously proposed MAS-J-HMQC experiment in terms of proton resolution on a model sample of powdered L-alanine. We show that for natural abundance compounds, the MAS-J-HMQC and MAS-J-HSQC experiments give about the same proton resolution, whereas, for (13)C-labeled materials, narrower proton linewidths are obtained with the MAS-J-HSQC experiment. In addition we show that in scalar as well as in dipolar heteronuclear shift correlation experiments, when the proton chemical shift is encoded by the evolution of a single-quantum coherence, the proton resolution can be enhanced by simply adding a 180 degrees carbon pulse in the middle of the t(1) evolution time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号