首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of a series of new, accordion-optimized long-range heteronuclear shift correlation techniques has been reported. A further derivative of the constant time variable delay introduced in the IMPEACH-MBC experiment, a STAR (Selectively Tailored Accordion F(1) Refocusing) operator is described in the present report. Incorporation of the STAR operator with the capability of user-selected homonuclear modulation scaling as in the CIGAR-HMBC experiment, into a long-range heteronuclear shift correlation pulse sequence, (2)J,(3)J-HMBC, affords for the first time in a proton-detected experiment the means of unequivocally differentiating two-bond ((2)J(CH)) from three-bond ((3)J(CH)) long-range correlations to protonated carbons. Copyright 2000 Academic Press.  相似文献   

2.
A new pulse sequence, long-range CPMG-adjusted heteronuclear single quantum coherence (LR-CAHSQC), is proposed for the determination of long-range JCH coupling constants from a long-range 1H-13C correlation experiment. The long-range heteronuclear coupling constants can be directly extracted from COSY-type antiphase peak patterns. The current approach utilizes CPMG-sequences for polarization transfer, and thus avoids the evolution of homonuclear JHH couplings, which normally may introduce abnormalities into the cross peak pattern. The differences between LR-CAHSQC and normal LR-HSQC are discussed.  相似文献   

3.
A simplified phase-cycling scheme for heteronuclear active-coupling-pattern tilting (ACT) spectroscopy is presented. It is demonstrated that the theoretically expected twofold sensitivity gain over earlier implementations can be experimentally realized. A further intensity increase by a factor of 2 is obtained with standard sensitivity-enhancement pulse-sequence elements. The HSQC-HECADE sequence presented is designed for an accurate determination of heteronuclear one-bond and, with subsequent I-spin isotropic mixing, long-range coupling constants. As an exemplary application, the determination of the (3)J(N,Hbeta) coupling constants in a peptide at natural isotope abundance is demonstrated. Additionally, a new polarization-transfer step for the long-range HSQC-HECADE experiment is proposed which avoids a fixed delay tuned to a specific coupling-constant value. Thus, the long-range correlation experiment does not require prior knowledge of the coupling constants to be measured and yields more uniform cross-peak intensity for a broad range of active coupling constants.  相似文献   

4.
A 3D HSQC-HSQMBC experiment is proposed for increasing the separation of proton-carbon long-range correlation cross peaks, the lack of which is occasionally seen in corresponding 2D experiments. It is aimed at complex molecules with many protonated carbons exhibiting a narrow spread of 13C chemical shifts e.g., complex carbohydrates. It does not yield long-range correlation of quaternary carbons. An extra indirectly detected 1H dimension of this experiment provides additional separation of long-range correlation cross peaks by utilising the chemical shifts of protons directly attached to 13C. Evolution of single-quantum coherences throughout the entire pulse sequence ensures that the cross peaks are inphase pure absorption singlets in both indirectly detected dimensions, thus maximising the resolution and sensitivity of the experiment. Partial signal cancellation can be expected due to the antiphase character of peaks in the directly detected dimension. The intensity of cross peaks depends on the length of a single long-range evolution interval and values of both active and passive long-range coupling constants of each carbon. The 3D HSQC-HSQMBC experiment provided high quality long-range correlation spectra of a 2 mg pentasaccharide sample in 27 h. The technique can also be used for measurement of long-range heteronuclear coupling constants from pure antiphase multiplets in the directly detected dimension.  相似文献   

5.
A 3D HSQC-HSQMBC experiment is proposed for increasing the separation of proton–carbon long-range correlation cross peaks, the lack of which is occasionally seen in corresponding 2D experiments. It is aimed at complex molecules with many protonated carbons exhibiting a narrow spread of 13C chemical shifts e.g., complex carbohydrates. It does not yield long-range correlation of quaternary carbons. An extra indirectly detected 1H dimension of this experiment provides additional separation of long-range correlation cross peaks by utilising the chemical shifts of protons directly attached to 13C. Evolution of single-quantum coherences throughout the entire pulse sequence ensures that the cross peaks are inphase pure absorption singlets in both indirectly detected dimensions, thus maximising the resolution and sensitivity of the experiment. Partial signal cancellation can be expected due to the antiphase character of peaks in the directly detected dimension. The intensity of cross peaks depends on the length of a single long-range evolution interval and values of both active and passive long-range coupling constants of each carbon. The 3D HSQC-HSQMBC experiment provided high quality long-range correlation spectra of a 2 mg pentasaccharide sample in 27 h. The technique can also be used for measurement of long-range heteronuclear coupling constants from pure antiphase multiplets in the directly detected dimension.  相似文献   

6.
PISEMO, a separated local field experiment that can be performed with either direct (15)N (or (13)C) detection or indirect (1)H detection, is demonstrated on a single crystal of a model peptide. The (1)H signals modulated by (1)H-(15)N heteronuclear dipole-dipole couplings are observed stroboscopically in the windows of the multiple-pulse sequence used to attenuate (1)H-(1)H homonuclear dipole-dipole couplings. (1)H-detection yields spectra with about 2.5 times the signal to noise ratio observed with (15)N-detection under equivalent conditions. Resolution in both the (15)N chemical shift and (1)H-(15)N heteronuclear dipole-dipole coupling dimensions is similar to that observed with PISEMA, however, since only on-resonance pulses are utilized, the bandwidth is better.  相似文献   

7.
Long-range 1H-1?N correlations detected by the heteronuclear multiple-bond correlation (HMBC) experiment are explored for the characterization of amino sugars. The gradient-enhanced HMBC, IMPACT-HMBC, and a modified pulse sequence with the 1J-filters removed, IMPACT-HNMBC, are compared for sensitivity and resolution. 1?N chemical shifts and long-range proton correlations are reported using the IMPACT-HNMBC experiment for N-acetyl-glucosamine, N-acetyl-galactosamine, and for a series of glucosamine analogs with an N-sulfo substitution, unmodified amino group, and 6-O-sulfonation. As is common with sugars, for all the compounds examined both anomeric forms are present in solution. For each compound studied, the 1?N chemical shifts of the α anomer are downfield of the β form. For the N-acetylated sugars, the β anomer has a unique long-range 1?N correlation to the anomeric proton not observed for the α anomer. Though N-sulfonation results in a significant change in the 1?N chemical shift of the glucosamine analogs, 6-O sulfo substitution has no significant effect on the local environment of the amino nitrogen. For N-acetylated sugars in D?O solution, peaks in the 1?N projection of the HMBC spectrum appear as triplets as a result of J-modulation due to 2H-1?N coupling.  相似文献   

8.
Signal enhancement in heteronuclear correlation spectra as well as signal selection in 1H experiments can be achieved through inverse, i.e., 1H, detection in the solid state under fast MAS conditions. Using recoupled polarization transfer (REPT), a heteronuclear 1H-15N single-quantum correlation (HSQC) experiment is presented whose symmetrical design allows the frequency dimensions to be easily interchanged. By observing the 15N dimension indirectly and detecting on 1H, the sensitivity is experimentally found to be increased by factors between 5 and 10 relative to conventional 15N detection. In addition, the inverse 1H-15N REPT-HSQC scheme can be readily used as a filter for the 1H signal. As an example, we present the combination of such a heteronuclear filter with a subsequent 1H-1H DQ experiment, yielding two-dimensional 15N-edited 1H-1H DQ MAS spectra. In this way, specific selection or suppression of 1H resonances is possible in solid-state MAS experiments, by use of which the resolution can be improved and information can be unravelled in 1H spectra.  相似文献   

9.
A new two-dimensional scheme is proposed for accurate measurements of high-resolution chemical shifts and heteronuclear dipolar couplings in NMR of aligned samples. Both the (1)H chemical shifts and the (1)H-(15)N dipolar couplings are evolved in the indirect dimension while the (15)N chemical shifts are detected. This heteronuclear correlation (HETCOR) spectroscopy yields high-resolution (1)H chemical shifts split by the (1)H-(15)N dipolar couplings in the indirect dimension and the (15)N chemical shifts in the observed dimension. The advantages of the HETCOR technique are illustrated for a static (15)N-acetyl-valine crystal sample and a (15)N-labeled helical peptide sample aligned in hydrated lipid bilayers.  相似文献   

10.
A new two-dimensional pulse sequence for accurately determining heteronuclear coupling constants is presented. It is derived from HSQC and HECADE techniques with B0 gradient coherence selection. The main feature of the proposed method is spectra with only one component of the IS doublet; i.e., the final result is equivalent to a selective broadband excitation of either Salpha or Sbeta spin states and a preservation of these states during the entire experiment. The effect is obtained by an appropriate combination of in- and antiphase coherences. It is demonstrated that heteronuclear single-bond as well as long-range coupling constants and their relative signs are readily evaluated. The proposed sequence is equally or less sensitive to a variation of heteronuclear one-bond couplings than previously published, closely related sequences. The new method is applied to a peptide sample for determination of 3JN, Hbeta.  相似文献   

11.
A method for selectively suppressing the signals of OH and NH protons in (1)H combined rotation and multiple-pulse spectroscopy (CRAMPS) and in (1)H-(13)C heteronuclear correlation (HETCOR) solid-state NMR spectra is presented. It permits distinction of overlapping CH and OH/NH proton signals, based on the selective dephasing of the magnetization of OH and NH protons by their relatively large (1)H chemical-shift anisotropies. For NH protons, the (14)N-(1)H dipolar coupling also contributes significantly to this dephasing. The dephasing is achieved by a new combination of heteronuclear recoupling of these anisotropies with (1)H homonuclear dipolar decoupling. Since the 180 degrees pulses traditionally used for heteronuclear dipolar and chemical-shift anisotropy recoupling would result in undesirable homonuclear dephasing of proton magnetization, instead the necessary inversion of the chemical-shift Hamiltonian every half rotation period is achieved by inverting the phases of all the pulses in the HW8 multiple-pulse sequence. In the HETCOR experiments, carefully timed (13)C 180 degrees pulses remove the strong dipolar coupling to the nearby (13)C spin. The suppression of NH and OH peaks is demonstrated on crystalline model compounds. The technique in combination with HETCOR NMR is applied to identify the CONH and NH-CH groups in chitin and to distinguish NH and aromatic proton peaks in a peat humin.  相似文献   

12.
Two 2D J-modulated HSQC-based experiments were designed for precise determination of small residual dipolar one-bond carbon-proton coupling constants in (13)C natural abundance carbohydrates. Crucial to the precision of a few hundredths of Hz achieved by these methods was the use of long modulation intervals and BIRD pulses, which acted as semiselective inversion pulses. The BIRD pulses eliminated effective evolution of all but (1)J(CH) couplings, resulting in signal modulation that can be described by simple modulation functions. A thorough analysis of such modulation functions for a typical four-spin carbohydrate spin system was performed for both experiments. The results showed that the evolution of the (1)H-(1)H and long-range (1)H-(13)C couplings during the BIRD pulses did not necessitate the introduction of more complicated modulation functions. The effects of pulse imperfections were also inspected. While weakly coupled spin systems can be analyzed by simple fitting of cross peak intensities, in strongly coupled spin systems the evolution of the density matrix needs to be considered in order to analyse data accurately. However, if strong coupling effects are modest the errors in coupling constants determined by the "weak coupling" analysis are of similar magnitudes in oriented and isotropic samples and are partially cancelled during dipolar coupling calculation. Simple criteria have been established as to when the strong coupling treatment needs to be invoked.  相似文献   

13.
The experimental parameters critical for the implementation of multidimensional solid-state NMR experiments that incorporate heteronuclear spin exchange at the magic angle are discussed. This family of experiments is exemplified by the three-dimensional experiment that correlates the (1)H chemical shift, (1)H-(15)N dipolar coupling, and (15)N chemical shift frequencies. The broadening effects of the homonuclear (1)H-(1)H dipolar couplings are suppressed using flip-flop (phase- and frequency-switched) Lee-Goldburg irradiations in both the (1)H chemical shift and the (1)H-(15)N dipolar coupling dimensions. The experiments are illustrated using the (1)H and (15)N chemical shift and dipolar couplings in a single crystal of (15)N-acetylleucine.  相似文献   

14.
A new 2D pulse sequence HMSC (heteronuclear multiple-bond and single-bond coupling connectivities) for the simultaneous detection of long-range and one-bond heteronuclear connectivities is proposed which allows the two types of responses to be separated and the corresponding (n)J(CH) and (1)J(CH) connectivity maps to be calculated. (n)J(CH) coherences are selectively labeled in the course of the pulse sequence, the correspondingly acquired data are separately stored, and a simple add/subtract procedure is applied to disentangle and edit (n)J(CH) and (1)J(CH) responses prior to final data processing. Unlike standard methods, which are designed to measure one single type of heteronuclear spin-spin interactions and to efficiently suppress the other, both (n)J(CH) and (1)J(CH) are measured simultaneously in a single experiment with the HMSC pulse sequence. Compared to the common strategy with two standard experiments applied one after the other, e.g., HMBC and HMQC, valuable measuring time may be saved with this single experiment approach. The efficiency of the new pulse sequence and the quality of the corresponding spectra are demonstrated using strychnine. Features such as sensitivity, lineshapes, and the suppression of (1)J(CH) residual peaks in the final (n)J(CH) subspectra are investigated and compared with the corresponding results obtained with standard methods. The attractive and unique single experiment approach, its high efficiency, and its easy experimental setup together with straightforward data processing make HMSC a valuable experimental alternative for the today's more time-consuming "two-step" practice and makes it suitable for standard routine applications.  相似文献   

15.
This paper describes a number of improvements to a method, developed in this laboratory and described in J. Magn. Reson. 85 (1989) 111-113, which makes it possible to determine values of long-range 13C-1H coupling constants from heteronuclear multiple bond correlation (HMBC) spectra. First, it is shown how pulsed-field gradients can be introduced into the HMBC experiment without perturbing the form of the cross-peak multiplets; a one-dimensional version of the experiment is also described which permits the rapid measurement of a small number of couplings. Second, the experiment is modified so that one-bond and long-range cross-peaks can be separated, and so that the one-bond cross-peaks have more reliable intensities. Finally, it is shown how these one-bond cross-peaks can be used to advantage in the fitting procedure.  相似文献   

16.
Three types of experiments for measuring (n)J(CH) heteronuclear long-range coupling constants are examined and extended with state-of-the-art pulse sequence building-blocks: The use of a HMBC with corresponding reference-HSQC for accurate coupling determination is combined with the constant time technique and the conversion of antiphase magnetization into ZQ/DQ-coherences; CPMG-based LR-CAHSQC and BIRD(r,X)-HSQMBC experiments are examined in detail with respect to their coherence transfer properties; finally, the HSQC-TOCSY-IPAP experiment is introduced, a sequence derived from previously published alpha and beta selective HSQC-TOCSYs using a different spin state selection technique and a recently developed ZQ-suppression method. The experiments are characterized with their advantages and disadvantages and compared using strychnine and menthol as standard molecules.  相似文献   

17.
We report a G-BIRD(r) modified coupled HSQC experiment for the accurate determination of one-bond heteronuclear residual dipolar couplings. The G-BIRD(r) module has been employed to refocus the long-range coupling evolution of the heteronucleus during the t1 frequency labeling period. As a result, the crosspeaks obtained are split by only the direct one-bond coupling that can be extracted by measuring simple frequency differences between singlet maxima. Additionally the decoupling of long-range multiple bond splittings leads to considerable sensitivity enhancement. The modification also has been applied in a TROSY sequence resulting in a significant sensitivity and resolution improvement.  相似文献   

18.
We describe new correlation experiments suitable for determining long-range 1H-1H distances in 2H,15N-labeled peptides and proteins. The approach uses perdeuteration together with back substitution of exchangeable protons during sample preparation as a means of attenuating the strong 1H-1H dipolar couplings that broaden 1H magic angle spinning (MAS) spectra of solids. In the approach described here, we retain 100% of the 1H sensitivity by labeling and detecting all exchangeable sites. This is in contrast to homonuclear multiple pulse decoupling sequences that are applied during detection and that compromise sensitivity because of the requirement of sampling between pulses. As a result 1H detection provides a gain in sensitivity of >5 compared to the 15N detected version of the experiment (at a MAS frequency of 13.5kHz). The pulse schemes make use of the favorable dispersion of the amide 15Ns resonances in the protein backbone. The experiments are demonstrated on a sample of the uniformly 2H,15N-labeled dipeptide N-Ac-Val-Leu-OH and are analogous to the solution-state suite of HSQC-NOESY experiments. In this compound the 1H amide linewidths at 750MHz vary from approximately 0.67 ppm at omega(r)/2pi approximately 5kHz to approximately 0.20 ppm at omega(r)/2pi approximately 30kHz, indicating that useful resolution is available in the 1H spectrum via this approach. Since the experiments circumvent the problem of dipolar truncation in the 1H-1H spin system, they should make it possible to measure long-range distances in a uniformly labeled environment. Thus, we expect the experiments to be useful in constraining the global fold of a protein.  相似文献   

19.
对抗精神分裂症新药阿立哌唑的紫外光谱(UV)、红外光谱(IR)、核磁共振谱(NMR)以及质谱(MS)进行了解析。根据该化合物的紫外光谱探讨了其在溶液中的存在形式,讨论了红外光谱的特征吸收峰所对应的官能团的振动形式以及质谱的特征同位素离子峰,利用1H—1H cosy,HSQC,HMBC等二维核磁共振技术推断并确证了该化合物的结构,对NMR谱信号进行了归属,并根据化学位移、偶合常数以及二维相关谱分析了该化合物结构中的10个不同的亚甲基。  相似文献   

20.
A pulse sequence is described for the recoupling of heteronuclear dipolar interactions under MAS. The method is similar to the PISEMA experiment, but employs a well-defined amplitude modulation of one of the two radio-frequency fields. The technique is used for measurements of 1H-13C dipolar couplings in unoriented solid and liquid-crystalline samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号