共查询到20条相似文献,搜索用时 0 毫秒
1.
Top layers of γ-Al2O3 composite membranes have been modified by the silane coupling technique using phenyltriethoxysilane for improving the separation factor of CO2 to N2. The separation efficiency of the modified membranes was strongly dependent upon the hydroxylation tendency of the support materials and the amount of the special functional group (i.e. phenyl radical) which was coupled onto a top layer. The separation factor through the TiO2 supported γ-Al2O3 membrane was found to be fairly enhanced by silane coupling, but in case of the -Al2O3 supported membrane was not. The CO2/N2 separation factor through the modified γ-Al2O3/TiO2 composite membrane is 1.7 at 90°C and ΔP = 2 × 105 Pa for the binary mixture containing 50 vol% CO2. The separation factor is proportional to the CO2 concentration in the gas mixture, and the modified membrane is stable up to 100°C. The main mechanism of the CO2 transport through the modified γ-Al2O3 layer is known to be a surface diffusion. 相似文献
2.
Composite hollow fibers membranes were prepared by coating poly(phenylene oxide) (PPO) and polysulfone (PSf) hollow fibers with high molecular polyvinylamine (PVAm). Two procedures of coating hollow fibers outside and respective inside were investigated with respect to intrinsic PVAm solution properties and hollow fibers geometry and material.The influence of operating mode (sweep or vacuum) on the performances of membranes was investigated. Vacuum operating mode gave better results than using sweep because part of the sweep gas permeated into feed and induced an extra resistance to the most permeable gas the CO2. The composite PVAm/PSf HF membranes having a 0.7–1.5 μm PVAm selective layer, showed CO2/N2 selectivity between 100 and 230. The selectivity was attributed to the CO2 facilitated transport imposed by PVAm selective layer. The CO2 permeance changed from 0.006 to 0.022 m3(STP)/(m2 bar h) in direct correlation with CO2 permeance and separation mechanism of the individual porous supports used for membrane fabrication. The multilayer PVAm/PPO membrane using as support PPO hollow fibers with a 40 nm PPO dense skin layer, surprisingly presented an increase in selectivity with the increase in CO2 partial pressure. This trend was opposite to the facilitated transport characteristic behaviour of PVAm/porous PSf. This indicated that PVAm/PPO membrane represents a new membrane, with new properties and a hybrid mechanism, extremely stable at high pressure ratios. The CO2/N2 selectivity ranged between 20 and 500 and the CO2 permeance from 0.11 to 2.3 m3(STP)/(m2 bar h) depending on the operating conditions.For both PVAm/PSf and PVAm/PPO membranes, the CO2 permeance was similar with the CO2 permeance of uncoated hollow fiber supports, confirming that the CO2 diffusion rate limiting step resides in the properties of the relatively thick support, not at the level of 1.2 μm thin and water swollen PVAm selective layer. A dynamic transfer of the CO2 diffusion rate limiting step between PVAm top layer and PPO support was observed by changing the feed relative humidity (RH%). The CO2 diffusion rate was controlled by the PPO support when using humid feed. At low feed humidity the 1.2 μm PVAm top layer becomes the CO2 diffusion rate limiting step. 相似文献
3.
A new way to prepare hydrophobic membranes is reported. Polydimethylsiloxane oil (and any other silicone oil molecules) was grafted onto a porous alumina membrane (or any hydroxylated ceramic or glass) by heating, to 180°C, producing a covalently grafted monolayer of silicone oil, chemically and thermally stable, unaffected by organic solvents but susceptible to alkali attack (as is the silicone oil itself). The membrane is totally impermeable to pure water, and organic solvents may be extracted from water mixtures by pervaporation. Very high permeation fluxes were obtained, suggesting possible use of these silicone/ceramic membranes in extraction of volatile organic compounds (VOCs). This simple modification can be applied to macroporous membranes increasing hydrophobicity without pore blocking. 相似文献
4.
An experimental and theoretical analysis to separate CO2 using facilitated transport membranes immobilized with different aqueous single and mixed amine solutions have been performed. The membranes containing monoethanolamine (MEA), diethanolamine (DEA), monoprotonated ethylenediamine (EDAH+) and piperazine (PZ), as well as aqueous blends of PZ with MEA, DEA or EDAH+ were considered. The aqueous solution of PZ showed the highest CO2 permeation rate with respect to other single amine solutions. Therefore blends of PZ with MEA, DEA and EDAH+ increased the permeance of carbon dioxide through mixed amine membranes. 相似文献
5.
In the present work, membranes from commercially available Pebax® MH 1657 and its blends with low molecular weight poly(ethylene glycol) PEG were prepared by using a simple binary solvent (ethanol/water). Dense film membranes show excellent compatibility with PEG system up to 50 wt.% of content. Gas transport properties have been determined for four gases (H2, N2, CH4, CO2) and the obtained permeabilities were correlated with polymer properties and morphology of the membranes. The permeability of CO2 in Pebax®/PEG membrane (50 wt.% of PEG) was increased two fold regarding to the pristine Pebax®. Although CO2/N2 and CO2/CH4 selectivity remained constant, an enhancement of CO2/H2 selectivity (∼11) was observed. These results were attributed to the presence of EO units which increases CO2 permeability, and to a probable increase of fractional free-volume. Furthermore, for free-volume discussion and permeability of gases, additive and Maxwell models were used. 相似文献
6.
Formation of integrally skinned asymmetric polysulfone gas separation membranes by supercritical CO2
Alondra Torres-Trueba F. Alberto Ruiz-Trevio Gabriel Luna-Brcenas Ciro H. Ortiz-Estrada 《Journal of membrane science》2008,320(1-2):431-435
Integrally skinned asymmetric polysulfone membranes were prepared from originally dense films inducing asymmetry by the formation of the porous layer adding to one side of the membranes chloroform and supercritical CO2 (SCCO2), and then allowing the SCCO2 expansion to occur. The influence of the chloroform/polysulfone mass ratio (g CH3Cl/g PSF), SCCO2 density and depressurization rate over the thickness of both the porous and the dense skin layers, the morphology of the porous support and the pure O2 and N2 permeability and selectivity performance were studied.The results show that it is possible to induce a very-controlled asymmetry in a dense film following the procedure described in this work and as expected, the thickness of the porous layer increases while the dense skin layer decreases as the chloroform/polysulfone mass ratio increases. Images of the porous layer show that the average-pore size decreases at high SCCO2 densities and slightly decreases with increasing the CO2 depressurization rates. The O2 and N2 permeability coefficients, measured at 35 °C and 2 bar, for the polysulfone asymmetric membranes are practically the same of those determined in dense films, suggesting that the dense skins are essentially defect-free of pinholes. 相似文献
7.
Susan Dadbin 《European Polymer Journal》2002,38(12):2489-2495
The influence of the pulsed CO2 laser irradiation on the surface structure of the LDPE film was investigated. Significant changes were observed on the surface of laser treated films as it was verified by the attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy and contact angle-measurement. Formation of polar functional groups onto the LDPE surfaces exhibited by the ATR-FTIR spectra was shown to be strongly dependent on the number of the CO2 laser pulses. The intensity of the polar groups increased with increasing the number of pulses up to two and then slightly decreased at three laser pulses. This was also confirmed with the contact angle measurements in which the sample subjected to two laser pulses showed the highest wettability i.e. the lowest water drop contact angle. The concentration of peroxide groups formed on the surface of the laser treated films was determined quantitatively by UV spectroscopic method using iodide procedure. The latter results showed a similar trend with the results obtained using FTIR spectroscopy. 相似文献
8.
Katsuki Kusakabe Kiyotaka IchikiJun-ichiro Hayashi Hideaki MaedaShigeharu Morooka 《Journal of membrane science》1996
Silica-polyimide microcomposite membranes were prepared on γ-alumina-coated α-alumina support tubes, and their gas permeation properties were evaluated with He, N2 and CO2. Smoothing of the substrate surface and hybridization of silica and polyamic acid were both effective to form defect-free thin composite membranes. The CO2 permeance of a membrane with a silica content of 68 wt% was one order of magnitude higher than that of a polyimide membrane having the same thickness. The permselectivity of CO2 to N2 was 30 at 30°C and 13 at 100°C. Contributions of the silica and polyimide phases to permeance of the composite membrane were analyzed with a two-phase permeation model. The effective thickness of the rate-controlling polyimide phase was less than one-tenth of the total thickness of the silica-polyimide membrane. 相似文献
9.
Interfacially formed poly(N,N-dimethylaminoethyl methacrylate)/polysulfone (PDMAEMA/PSF) composite membranes were developed for CO2/N2 separation. A layer of PDMAEMA was deposited on a microporous PSF substrate by the solution coating technique, followed by crosslinking with p-xylylene dichloride (XDC) at the interface between the PDMAEMA solid layer and the crosslinking solution. The hydrophilicity and surface free energy of the membranes were analyzed by contact angle measurements with different probe liquids. The permselectivity of the membrane was shown to be affected by the PDMAEMA deposition time, interfacial crosslinking reaction time, and the PDMAEMA and XDC concentrations in the polymer coating solution and the crosslinking solution, respectively. The composite membrane showed a CO2 permeance of 85 GPU and a CO2/N2 ideal separation factor of 50 at 23 °C and 0.41 MPa of CO2 feed pressure. 相似文献
10.
A. Dobrak B. Verrecht H. Van den Dungen A. Buekenhoudt I.F.J. Vankelecom B. Van der Bruggen 《Journal of membrane science》2010
This paper describes solvent flux and rejection behavior of different hydrophilic TiO2 membranes and a hydrophobic ZrO2 membrane. Solvents and solutes used range from polar to non-polar. Additionally, the temperature effect on permeability and rejection of solutes through these membranes was examined. 相似文献
11.
Capture of CO2 from flue gases produced by the combustion of fossil fuels and biomass in air is referred to as post-combustion capture. Chemisorbent processes are considered to be the most feasible method and are already at an advanced stage of development, but gas separation membranes are attracting more and more attention as a possible alternative. This paper describes a detailed parametric study of mass and energy balances for a simulated single membrane process. Typical operating conditions (CO2 concentration in the flue gas, pressure and temperature, etc.) together with the influence of the membrane quality (permeability, selectivity) and membrane area on membrane performance (CO2 separation degree and CO2 purity) are simulated over a wide range of parameters. 相似文献
12.
Fabrication of polymer/fluoride-containing salts blend composite membranes for CO2 separation 下载免费PDF全文
Poly (N, N-dimethylaminoethyl methacrylate)-poly (ethylene glycol methyl ether methacrylate) (PDMAEMA-PEGMEMA) and cesium fluoride (CsF) were blended and used as the separation material of composite membranes. Hollow fiber composite membranes were fabricated by coating the blend on polysulfone (PSf) hollow fiber substrate. Introduction of fluorine ion improved the separation performance of the membrane. The concentration of coating solution was adjusted to obtain a membrane with high permeance. The composite membrane showed good performance with the CO2 permeance of 30.4 GPU (1 GPU = 10-6 cm3(STP)/(cm2·s·cmHg)), and selectivities to CO2/N2, CO2/CH4, CO2/H2 and O2/N2 of 47.2, 37.6, 1.75 and 4.70, respectively. Potassium fluoride (KF), due to its low cost, was also used as a substitute of CsF to prepare composite membrane and the permeation data showed that CsF can be replaced by KF. The effect of operating temperature on the permeation properties of the composite membrane was also investigated. 相似文献
13.
Low-temperature CO2 plasma is used for the treatment of poly-ethersulfone (PES), polyamide (PA) and poly-phenylene ethersulfone (PPE) ultrafiltration membranes. This has led to significant enhancement of the wetting characteristics of the membrane surface as is shown by contact angle measurements and Fourier transform infrared (FTIR) spectrum analysis of the treated membranes. Changes in the physical characteristics of the surface, such as tensile property, surface roughness, etc. are quantified by tensile strength measurement and atomic force microscopy (AFM), respectively. An increase in the measured values of the di-electric constants further highlights the hydrophilic modification of the surface. A series of ultrafiltration experiments using a BSA solution of known concentration under different operating conditions is performed and the deposition thicknesses over the membrane surface during ultrafiltration are measured directly using image analyzing microscopy. The results clearly demonstrate that a plasma treated PES membrane is more hydrophilic with smoother surface and resists fouling leading to significant enhancement of permeate flux. 相似文献
14.
利用自行搭建的膜分离实验台,考察了共存气态组分以及颗粒物对于聚二甲基硅氧烷/聚砜(PDMS-PSF)复合膜分离CO2性能的影响.结果表明,共存气态组分中O2对于膜分离CO2有抑制作用;由于SO2浓度显著低于CO2,在短时间内对膜分离CO2没影响;水汽可以促进CO2的分离;燃煤飞灰细颗粒在分离膜表面沉积会导致膜性能的恶化.在此基础上,采用模拟湿法烟气脱硫系统装置,进行了燃煤湿法脱硫净烟气环境下的膜分离CO2实验;在测试的50 h以内,水汽、SO2和O2的共同作用导致膜分离性能在前期有一定的提高,随着运行时间的延长,细颗粒物对膜的影响程度加大,导致PDMS-PSF复合膜的分离性能逐渐恶化,最终导致膜的CO2/N2分离因子和CO2渗透速率分别下降了17.91%和28.21%. 相似文献
15.
This paper presents an overview on recent developments in surface modification of polymer membranes for reduction of their fouling with biocolloids and organic colloids in pressure driven membrane processes. First, colloidal interactions such as London–van der Waals, electrical, hydration, hydrophobic, steric forces and membrane surface properties such as hydrophilicity, charge and surface roughness, which affect membrane fouling, have been discussed and the main goals of the membrane surface modification for fouling reduction have been outlined. Thereafter the recent studies on reduction of (bio)colloidal of polymer membranes using ultraviolet/redox initiated surface grafting, physical coating/adsorption of a protective layer on the membrane surface, chemical reactions or surface modification of polymer membranes with nanoparticles as well as using of advanced atomic force microscopy to characterize (bio)colloidal fouling have been critically summarized. 相似文献
16.
Polycrystalline randomly oriented defect free zeolite layers on porous α-Al2O3 supports are prepared with a thickness of less than 5 μm by in situ crystallisation of silicalite-1. The flux of alkanes is a function of the sorption and intracrystalline diffusion. In mixtures of strongly and weakly adsorbing gases and a high loadings of the strongly adsorbing molecule in the zeolite poze, the flux of the weakly adsorbing molecule is suppressed by the sorption and the mobility of the strongly adsorbing molecule resulting in pore-blocking effects. The separation of these mixtures is mainly based on the sorption and completely different from the permselectivity. At low loadings of the strongly adsorbing molecules the separation is based on the sorption and the diffusion and is the same as the permselectivity. Separation factors for the isomers of butane (n-butane/isobutane) and hexane (hexane/2,2-dimethylbutane) are respectively high (10) and very high (> 2000) at 200°C. These high separation factors are a strong evidence that the membrane shows selectivity by size-exclusion and that transport in pores larger than the zeolite MFI pores (possible defects, etc) can be neglected. 相似文献
17.
钛酸酯偶联剂对包硅铝钛白粉表面的有机改性 总被引:25,自引:0,他引:25
The surface organic modification of TiO2 particles with titanate coupling reagent,which was pre-coated with double layers of SiO2 and Al2O3,was studied.Experiments showed that the modified particles exhibited hydrophobic characteristics.The modification state of the particle surface was characterized by IR spectroscopic measurement,pyrolytic gas chromatography,thermogravimetric analysis and X-ray photoelectron spectra.The titanate coupling reagent binding with the hydroxyl on the particle surface was analyzed.The surface characteristics of pre-modification and post-modification particles were compared. 相似文献
18.
Poly(dimethylsiloxane) (PDMS)-HTiNbO5 nanocomposite membranes with various HTiNbO5 nanofiller content were prepared by melt intercalation. WAXS diffraction measurements and TEM observations have suggested that the HTiNbO5 mineral was exfoliated in the PDMS matrix. The influence of the filler in the membrane was evaluated by water diffusion, gas permeation (CO2, N2, O2, ethane and ethylene), toluene pervaporation and by CO2 sorption measurements.A filler content of only 2 wt.% in PDMS-HTiNbO5 nanocomposite membranes slows down the water diffusion significantly, and a filler content of 5 wt.% reduces also the permeability of the films for toluene. The addition of a filler content up to 10 wt.% do not significantly influences the gas permeability (P) except for CO2. The PDMS matrix appears to be highly permeable and, therefore, a decreasing effect on P is only marked for a very high HTiNbO5 content. This effect is more pronounced for CO2, the P value of which decreases by 80% when the amount of nanofiller is 40 wt.%. The sorption measurements show that the interaction between CO2 and PDMS is weak (isotherms agree with Henry’s law). The filler decreases the solubility of CO2 in the films (S = 7.94 × 10−3 and S = 5.44 × 10−3 cm3 STPcm−3 film cmHg−1 for PDMS and PDMS-HTiNbO5 40 wt.%, respectively). 相似文献
19.
Stable trichloro-octadecyl silane (ODS) derivatives of a 5 nm γ-alumina ceramic membrane were prepared. Gas permeabilities of the untreated membrane did not show Knudsen diffusion at 20°C. Gas permeabilities of the ODS membrane were three orders of magnitude lower; He, Ne, Ar, CO2, C3H8 have near constant permeabilities 360 mol s−1 m−2 bar−1, except methane which has the highest permeability of the group, 481 mol s−1 m−2 bar−1. The mechanism of diffusion is solution/diffusion. Remarkably, permeabilities of ODS-alumina membrane were reduced by 5 X after exposure to a pressure difference of 1 atm (active layer side) against vacuum for only 10 min. The effect was metastable but could be reversed on standing for several hours, reversal of pressure difference or after washing with (hydrocarbon solvent) toluene. The mechanism was presumed to be due to movement of the octadecyl-hydrocarbon chains of the silane monolayer causing a partially blocked pore structure; perhaps a unique example of self-fouling. 相似文献
20.
Hong-Yong Zhao Yi-Ming Cao Xiao-Li Ding Mei-Qing Zhou Jian-Hui Liu Quan Yuan 《Journal of membrane science》2008,320(1-2):179-184
The novel cross-linker, poly(propylene glycol) block poly(ethylene glycol) block poly(propylene glycol) diamine (PPG/PEG/PPGDA), was employed to chemically cross-link Matrimid 5218 at room temperature. The cross-linking reaction process was monitored by FTIR. The XRD was used to indicate the changing of the polymer structure by cross-linking reaction. The effects of the cross-linking reaction on mechanical performance, gel content and H2, CO2, N2 and CH4 gas transport properties of the cross-linked Matrimid membranes were investigated. The cross-linked Matrimid membranes display excellent CO2 permeability and CO2/light gas selectivity compared with the uncross-linked Matrimid membrane. Finally, the potential application of the cross-linked Matrimid membranes for CO2/light gas separation was explored. 相似文献