首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
The relative partial cross sections for ^13C^6+ -Ar collisions at 4.15-11.08 ke V/u incident energy are measured. The cross-section ratios σ^2E/σ^SC, σ^3E/σ^SC, σ^4E/σ^SC and σ^SE/σ^SC are approximately the constants of 0.514-0.05, 0.204-0.03, 0.064-0.03 and 0.024-0.01 in this region. The significance of the multi-electron process in highly charged ions (HCIs) with argon collisions is demonstrated (σ^ME/σ^SC as high as 0.794-0.06). In multi-electron processes, it is shown that transfer ionization is dominant while pure electron capture is weak and negligible. For all reaction channels, the cross-sections are independent of the incident energy in the present energy region, which is in agreement with the static characteristic of classic models, i.e. the molecular Coulomb over-the-barrier model (MCBM), the extended classical over-the-barrier model (ECBM) and the semiempirical scaling laws (SL). The result is compared with these classical models and with our previous work of ^13C^6+ -Ne collisions [Chin. Phys. Lett. 23 (2006) 95].  相似文献   

2.
3.
Slow collisions of highly charged ions with neutral atoms and molecules are of great importance in basic atomic collision physics, Recently, we built a new research facility for atomic physics at the Institute of Modern Physics. We report here the multiple electron transfer processes in collisions of Ar^9 with Na gas target at energy of 180 keV.  相似文献   

4.
5.
Based on the GEANT4 toolkit, we study the transportation of nucleons and nuclei in tissue-like media. The fragmentation of projectile nuclei and secondary interactions of produced nuclear fragments are considered. Livermore data is used to calculate electromagnetic interaction of primary and secondary charged particles. We validate the models using experimental data of 200 MeV/u and 400 MeV/u carbon ions, interacting with tissue equivalent materials of water. The model can well describe the depth-dose distributions in water and the doses measured for secondary fragments of certain charge and certain mass number. The secondary beam fragments produced by 200 MeV/u and 400 MeV/u ^12C^6+ ions in water are investigated using the model. When the primary nuclei are in water, several neutron production mechanisms are involved. The light charged particles (p, d, t, ^3He and ^4He) and fast neutrons contribute to the dose tail behind the Bragg peak. The ^11C fragments which may be the most suitable nuclei for monitoring the energy deposition in carbon-ion therapy are also discussed.  相似文献   

6.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号