首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the domain Q = [0,∞)×[0,∞) of the variables (x, t), for the telegraph equation with a Dirac potential concentrated at a point (x0, t0) ∈ Q, we consider a mixed problem with initial (at t = 0) conditions on the solution and its derivative with respect to t and a condition on the boundary x = 0 which is a linear combination with coefficients depending on t of the solution and its first derivatives with respect to x and t (a directional derivative). We obtain formulas for the classical solution of this problem under certain conditions on the point (x0, t0), the coefficient of the Dirac potential, and the conditions of consistency of the initial and boundary data and the right-hand side of the equation at the point (0, 0). We study the behavior of the solution as the direction of the directional derivative in the boundary condition tends to a characteristic of the equation and obtain estimates of the difference between the corresponding solutions.  相似文献   

2.
We study a projection-difference method for approximately solving the Cauchy problem u′(t) + A(t)u(t) + K(t)u(t) = h(t), u(0) = 0 for a linear differential-operator equation in a Hilbert space, where A(t) is a self-adjoint operator and K(t) is an operator subordinate to A(t). Time discretization is based on a three-level difference scheme, and space discretization is carried out by the Galerkin method. Under certain smoothness conditions on the function h(t), we obtain estimates for the convergence rate of the approximate solutions to the exact solution.  相似文献   

3.
We consider a boundary value problem for the wave equation with given initial conditions and with boundary conditions of the second kind at one end of the string and boundary conditions of the first kind at the other end of the string. We assume the boundary conditions to ensure that the solution of the problem (in the class of generalized functions) satisfying the initial conditions at the initial time t = 0 satisfies given terminal conditions at the terminal time t = T. We clarify the relationship between the functions µ(t) and ν(t) in the boundary conditions and the given functions specifying the initial and terminal states. We obtain closed-form analytic expressions for the functions µ(t) and ν(t) minimizing the boundary energy functional.  相似文献   

4.
We study the asymptotic behavior as t → +∞ of solutions to a semilinear second-order parabolic equation in a cylindrical domain bounded in the spatial variable. We find the leading term of the asymptotic expansion of a solution as t → +∞ and show that each solution of the problem under consideration is asymptotically equivalent to a solution of some nonlinear ordinary differential equation.  相似文献   

5.
We study the inverse problem of the reconstruction of the coefficient ?(x, t) = ?0(x, t) + r(x) multiplying ut in a nonstationary parabolic equation. Here ?0(x, t) ≥ ?0 > 0 is a given function, and r(x) ≥ 0 is an unknown function of the class L(Ω). In addition to the initial and boundary conditions (the data of the direct problem), we pose the problem of nonlocal observation in the form ∫0Tu(x, t) (t) = χ(x) with a known measure (t) and a function χ(x). We separately consider the case (t) = ω(t)dt of integral observation with a smooth function ω(t). We obtain sufficient conditions for the existence and uniqueness of the solution of the inverse problem, which have the form of ready-to-verify inequalities. We suggest an iterative procedure for finding the solution and prove its convergence. Examples of particular inverse problems for which the assumptions of our theorems hold are presented.  相似文献   

6.
We study a Cauchy type problem for a differential equation containing a fractional Riemann-Liouville partial derivative of order α, 0 < α < 2. Conditions under which the solution of the problem tends to zero as |x| → ∞ are obtained. We prove an existence theorem for a classical solution of the Cauchy type problem and show that the solution has a singularity as t → 0 of order 1 ? α if 0 < α ≤ 1 and of order 2 ? α if 1 < α < 2.  相似文献   

7.
For the abstract parabolic equation \(\dot x = Bx + bv\left( t \right)\) with an unbounded self-adjoint operator B, where b is a vector and v(t) is a scalar function, we suggest a solution method based on the evaluation of some rational function of the operator B. We obtain a priori estimates of the approximation error for the output function y(t) = <x(t), l>, where l is a given vector. The results of a numerical experiment for the inhomogeneous heat equation are presented.  相似文献   

8.
We deal with anomalous diffusions induced by continuous time random walks - CTRW in ?n. A particle moves in ?n in such a way that the probability density function u(·, t) of finding it in region Ω of ?n is given by ∫Ωu(x, t)dx. The dynamics of the diffusion is provided by a space time probability density J(x, t) compactly supported in {t ≥ 0}. For t large enough, u satisfies the equation
$$u\left( {x,t} \right) = \left[ {\left( {J - \delta } \right)*u} \right]\left( {x,t} \right)$$
, where δ is the Dirac delta in space-time. We give a sense to a Cauchy type problem for a given initial density distribution f. We use Banach fixed point method to solve it and prove that under parabolic rescaling of J, the equation tends weakly to the heat equation and that for particular kernels J, the solutions tend to the corresponding temperatures when the scaling parameter approaches 0.
  相似文献   

9.
We obtain new exact solutions U(x, y, z, t) of the three-dimensional sine-Gordon equation. The three-dimensional solutions depend on an arbitrary function F(α) whose argument is a function α(x, y, z, t). The ansatz α is found from an equation linear in (x, y, z, t) whose coefficients are arbitrary functions of α that should satisfy a system of algebraic equations. By this method, we solve the classical and a generalized sine-Gordon equation; the latter additionally contains first derivatives with respect to (x, y, z, t). We separately consider an equation that contains only the first derivative with respect to time. We present approaches to the solution of the sine-Gordon equation with variable amplitude. The considered methods for solving the sine-Gordon equation admit a natural generalization to the case of integration of the same types of equations in a space of arbitrarily many dimensions.  相似文献   

10.
A nonlinear heat equation with a special source on a straight line is considered. The family of exact solutions to this equation that have the form p(t) + q(t)cosx/√2, where functions p(t) and q(t) satisfy a certain dynamic system, is constructed. The system is comprehensively analyzed, and the behavior of p(t) and q(t) depending on initial data is revealed. It is found that some of the unbounded solutions from the aforementioned family are close, in a certain sense, to an analytical solution to the heat equation with power nonlinearities. The Cauchy problem for the equations considered is studied as well. It is proved that, depending on the initial solution function, solutions may develop in a blow-up regime or decay.  相似文献   

11.
In a Banach space E, we consider the abstract Euler–Poisson–Darboux equation u″(t) + kt?1u′(t) = Au(t) on the half-line. (Here k ∈ ? is a parameter, and A is a closed linear operator with dense domain on E.) We obtain a necessary and sufficient condition for the solvability of the Cauchy problem u(0) = 0, lim t→0+t k u′(t) = u1, k < 0, for this equation. The condition is stated in terms of an estimate for the norms of the fractional power of the resolvent of A and its derivatives. We introduce the operator Bessel function with negative index and study its properties.  相似文献   

12.
In our previous papers, we introduced the notion of a generalized solution to the initial-boundary value problem for the wave equation with a boundary function µ(t) such that the integral ∫ 0 T (T ? t)|µ(t)| p dt exists. Here we prove that this solution is a unique solution to the problem in L p that satisfies the corresponding integral identity.  相似文献   

13.
We consider a random process in a spatial-temporal homogeneous Gaussian field V (q , t) with the mean E V = 0 and the correlation function W(|q ? q′|, |t ? t′|) ≡ E[V (q, t)V (q′, t′)], where \( \bold{q} \in {\mathbb{R}^d} \), \( t \in {\mathbb{R}^{+} } \), and d is the dimension of the Euclidean space \( {\mathbb{R}^d} \). For a “density” G(r, t) of the familiar model of a physical system averaged over all realizations of the random field V, we establish an integral equation that has the form of the Dyson equation. The invariance of the equation under the continuous renormalization group allows using the renormalization group method to find an asymptotic expression for G(r, t) as r → ∞ and t → ∞.  相似文献   

14.
We consider the problem of recovering multiplication in the integers from enrichments of its additive structure, in the positive existential context. We prove that if a conjecture by Caporaso–Harris–Mazur holds, then for all integer-valued polynomials F of degree at least 2, multiplication is positive-existentially definable in (Z; 0, 1,+, RF, =) where RF is the unary relation F(Z). Similar results were only known for the polynomials F(t) = t2 (under the Bombieri–Lang conjecture) and F(t) = tn (under a generalization of the abc conjecture).  相似文献   

15.
We find the general solution of the equation for the error in the matrix of direction cosines of the form \(\dot x\) = αx + β, where α(t) is a skew-symmetric matrix with zero main diagonal, β(t) is the product of a skew-symmetric matrix by a matrix exponential, and α(t) and β(t) are functions of direction cosines, the angular velocity of the moving trihedral, and the error in the determination of the angular velocity. We point out the possibility of using the general solution to construct approximate formulas for the analysis of the orientation error.  相似文献   

16.
In this paper we study the three-element functional equation
$(V\Phi )(z) \equiv \Phi (iz) + \Phi ( - iz) + G(z)\Phi \left( {\frac{1}{z}} \right) = g(z), z \in R,$
, subject to
$R: = \{ z:\left| z \right| < 1, \left| {\arg z} \right| < \frac{\pi }{4}\} .$
We assume that the coefficients G(z) and g(z) are holomorphic in R and their boundary values G +(t) and g +(t) belong to H(Γ), G(t)G(t ?1) = 1. We seek for solutions Φ(z) in the class of functions holomorphic outside of \(\bar R\) such that they vanish at infinity and their boundary values Φ?(t) also belong to H(Γ). Using the method of equivalent regularization, we reduce the problem to the 2nd kind integral Fredholm equation.
  相似文献   

17.
In this paper we study a free boundary problem modeling the growth of multi-layer tumors. This free boundary problem contains one parabolic equation and one elliptic equation, defined on an unbounded domain in R2 of the form 0 〈 y 〈p(x,t), where p(x,t) is an unknown function. Unlike previous works on this tumor model where unknown functions are assumed to be periodic and only elliptic equations are evolved in the model, in this paper we consider the case where unknown functions are not periodic functions and both elliptic and parabolic equations appear in the model. It turns out that this problem is more difficult to analyze rigorously. We first prove that this problem is locally well-posed in little H61der spaces. Next we investigate asymptotic behavior of the solution. By using the principle of linearized stability, we prove that if the surface tension coefficient y is larger than a threshold value y〉0, then the unique flat equilibrium is asymptotically stable provided that the constant c representing the ratio between the nutrient diffusion time and the tumor-cell doubling time is sufficiently small.  相似文献   

18.
We obtain relations that define the equivalence algebra of the family of one-dimensional Boltzmann equations f t + cf x + F(t, x, c)f c = 0 and show that all equations of that form are locally equivalent. We carry out the group classification of the equation with respect to the function F in the special case where the function F and the transformations of the variables t and x are assumed to be independent of c. We show that, under such constraints for the transformation and the family of equations, the maximum possible symmetry algebra is eight-dimensional, which corresponds to an equation with a linear function F.  相似文献   

19.
We study a mixed problem for the wave equation with integrable potential and with two-point boundary conditions of distinct orders for the case in which the corresponding spectral problem may have multiple spectrum. Based on the resolvent approach in the Fourier method and the Krylov convergence acceleration trick for Fourier series, we obtain a classical solution u(x, t) of this problem under minimal constraints on the initial condition u(x, 0) = ?(x). We use the Carleson–Hunt theorem to prove the convergence almost everywhere of the formal solution series in the limit case of ?(x) ∈ L p[0, 1], p > 1, and show that the formal solution is a generalized solution of the problem.  相似文献   

20.
We establish the unique solvability of boundary value problems in Hölder function classes for a linear parabolic equation of order 2m in noncylindrical domains of the class C 2m ? 1,α , possibly unbounded (with respect to x as well as t), with nonsmooth (with respect to t) lateral boundary under the condition that the lower-order coefficients and the right-hand side of the equation can grow in a certain way when approaching the parabolic boundary of the domain and the leading coefficients may fail to satisfy the Dini condition near this boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号