首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Noether's theorem and Noether's inverse theorem for mechanical systems with gauge-variant Lagrangians under symmetric infinitesimal transformations and whose motion is described by quasi-coordinates are established. The existence of first integrals depends on the existence of solutions of the system of partial differential equations — the so-called Killing equations. Non-holonomic mechanical systems are analysed separately and their special properties are pointed out. By use of this theory, the transformation which corresponds to Ko Valevskaya first integral in rigid-body dynamics is found. Also, the nature of the energy integral in non-holonomic mechanics is shown and a few new first integrals for non-conservative problems are obtained. Finally, these integrals are used in constructing Lyapunov's function and in the stability analyses of nonautonomous systems. The theory is based on the concept of a mechanical system, but the results obtained can be applied to all problems in mathematical physics admitting a Lagrangian function.  相似文献   

2.
This paper is concerned with the large time behavior of solutions to the LifschitzSlyozovWagner (LSW) system of equations. Point-wise in time upper and lower bounds on the rate of coarsening are obtained for solutions with fairly general initial data. These bounds complement the time averaged upper bounds obtained by Dai and Pego, and the point-wise in time upper and lower bounds obtained by Niethammer and Velasquez for solutions with initial data close to a self-similar solution.  相似文献   

3.
A mathematical model for propagation of hydroelastic waves in a pipe is developed using the equations of motion of a shell and a fluid. A method for deriving two–dimensional equations is proposed, and asymptotic formulas for solutions of these equations are obtained. A model problem is solved numerically, and the results are compared with data obtained by others. The results obtained make it possible to calculate the propagation of pressure waves for an arbitrary (within the framework of the assumptions made) shape of the axial line of the pipe and can be used in designing systems for diagnostics of pipeline performance.  相似文献   

4.
The method of asymptotic expansions, with the thickness as the parameter, is applied to the nonlinear, three-dimensional, equations for the equilibrium of a special class of elastic plates under suitable loads. It is shown that the leading term of the expansion is the solution of a system of equations equivalent to those of von Kármán. The existence of solutions of this system is established. It is also shown that the displacement and stress corresponding to the leading term of the expansion have the specific form generally assumed in the usual derivations of the von Kármán equations; in particular, the displacement field is of Kirchhoff-Love type. This approach also clarifies the nature of admissible boundary conditions for both the von Kármán equations and the three-dimensional model from which these equations are obtained. A careful discussion of the limitations of this approach is given in the conclusion.  相似文献   

5.
Pointwise spatial decay estimates for a class of steady and unsteady nonlinear Dirichlet problems in a semi-infinite cylinder are obtained. These estimates extend previous results of Breuer & Roseman to a wider class of equations of mathematical physics.  相似文献   

6.
The main difficulty in the mathematical simulation of two-phase flows of gas-condensate or gassed oil in reservoirs is connected with a choice of binary or ternary models of hypothetical components representing the real multi-component mixture. The reduction of the number of degrees of freedom is illustrated by a plot of dependence of Gibbs concentration parameter on pressure for some numerical solutions. These solutions are calculated on the basis of balance equations, generalized Darcy law and equilibrium phase composition for a system of methane-n-butane-decane. It is shown that a binary model is adequate for the simulation of steady, quasi-stationary and self-similar flows into a well. Mathematical simulations of well-capacity for steady flows and processes of pressure build-up are considered.The mathematical problem of gas-condensate driven by dry gas is formulated. The corresponding solution with discontinuities is discussed by means of balance laws for jumps. It is shown that in the case of gas cycling processes a ternary model is necessary as the simplest one.The different approaches to the problem are also discussed.  相似文献   

7.
The retarded histories of unsteady plane parallel (Poiseuille) flows of Simple Fluids with Fading Memory between two parallel plates of infinite extent at a finite distance apart are shown to be admissible, in the sense that they satisfy the equations of motion at arbitrary time t = 0 to any order of approximation in the retardation parameter according to the scheme of approximation of Coleman & Noll [2]. The result obtained by Coleman & Mizel [6] for second-order fluids is reinterpreted in the above context.  相似文献   

8.
The theory of singular surfaces yields a set of coupled evolution equations for the shock amplitude and the amplitudes of the higher order discontinuities which accompany the shock. To solve these equations, we use perturbation methods with a perturbation parameter characterising the initial shock amplitude. It is shown that for decaying shock waves, if the accompanying second order discontinuity is of order one, the straightforward perturbation procedure yields uniformly valid solutions, but if the accompanying second order discontinuity is of order , the method of multiple scales is needed in order to render the perturbation solutions uniformly valid with respect to the distance of travel. We also construct shock wave solutions from modulated simple wave solutions which are obtained with the aid ofHunter & Keller's Weakly Nonlinear Geometrical Optics method. The two approaches give exactly the same results within their common range of validity. The explicit evolution laws thus obtained enable us to see clearly how weak nonlinear curved shock waves are attenuated because of the effects of geometry and material nonlinearity, and on what length scale these effects are most pronounced. Communicated by C. C. Wang  相似文献   

9.
In this paper, the (G′/G)-expansion method is used to obtain exact solitary-wave and periodic-wave solutions for nonlinear evolution equations arising in mathematical physics with the aid of symbolic computations, namely, the Klein-Gordon equation with quintic nonlinearity. Our work is motivated by the fact that the (G′/G)-expansion method provides not only more general forms of solutions, but also periodic and solitary waves. As a result, hyperbolic function solutions and trigonometric function solutions with parameters are obtained. The method is straightforward and concise, and its application is promising for other nonlinear evolution equations in mathematical physics.  相似文献   

10.
In this paper we propose a phenomenological theory for electrorheological fluids. In general these are suspensions which undergo dramatic changes in their material properties if they are exposed to an electric field. In the context of continuum mechanics these fluids can be modeled as non-Newtonian fluids. Recalling the governing equations of rational thermodynamics and electrodynamics of moving media (Maxwell-Minkowski-equations), we derive suitable governing equations of electrorheology using essentially two assumptions concerning magnetic quantities. Furthermore we introduce a 3-dimensional nonlinear constitutive equation for the Cauchy stress tensor which is an extension of the model proposed by Ružička (see [14]). Assuming a viscometric flow, we compare the shear stress of our model with other well known models and fit the parameters by using measurements that were obtained in a rotational viscometer. Excellent agreement between model and measurements is achieved. On the basis of these results we propose a 3-dimensional model, the so-called extended Casson -model. This model is investigated further for a channel flow configuration with a homogeneous electric field. We determine analytical solutions for the electric field, the velocity and the volumetric flow rate and illustrate the velocity profiles and the predicted pressure drop. The velocity profiles are flattened compared to parabolic profiles and become more flat if the electric field increases. Received March 21, 2000  相似文献   

11.
A unified approach is presented for solving the two-dimensional incompressible boundary layer equations. Solutions are obtained for direct and inverse options using the same equation formulation by a simple interchange of boundary conditions. A modified form of the mechul function scheme obtains inverse solutions with specification of transformed wall shear, skin friction coefficient or displacement thickness distributions. Direct solutions may be obtained without altering the block tridiagonal structure of the system by simply requiring no corrections on the streamwise pressure gradient parameter. Fourth-order spline discretization approximates normal derivatives with two- and three-point backward differences approximating streamwise derivatives, yielding a fully implicit solution method. The resulting spline/finite difference equations are solved by Newton-Raphson iteration together with partial pivoting. The results of the study demonstrate the importance of proper linearization of all equations. The successful use of spline discretization is also tied to the use of strong two-point boundary conditions at the wall for cases involving reversed flow. Numerical solutions are presented for several non-similar flows and compared with published results.  相似文献   

12.
Two kinds of second-order non-linear ordinary differential equations (ODEs) appearing in mathematical physics and non-linear mechanics are analyzed in this paper. The one concerns the Kidder equation in porous media and the second the gas pressure diffusion equation. Both these equations are strongly non-linear including quadratic first-order derivatives (damping terms). By a series of admissible functional transformations we reduce the prescribed equations to Abel's equations of the second kind of the normal form that they do not admit exact analytic solutions in terms of known (tabulated) functions. According to a mathematical methodology recently developed concerning the construction of exact analytic solutions of the above class of Abel's equations, we succeed in performing the exact analytic solutions of both Kidder's and gas pressure diffusion equations. The boundary and initial data being used in the above constructions are in accordance with each specific problem under considerations.  相似文献   

13.
This paper presents both a numerical and analytical study in connection with the steady boundary layer flow and heat transfer induced by a moving permeable semi-infinite flat plate in a parallel free stream. Both the velocities of the flat plate and the free stream are proportional to x 1/3. The surface temperature is assumed to be constant. The governing partial differential equations are converted into ordinary differential equations by a new similarity transformation. Numerical results for the flow and heat transfer characteristics are obtained for various values of the moving parameter, transpiration parameter and the Prandtl number. Approximate analytical solutions are also obtained when the suction or injection parameter is very large. It is found that dual solutions exist for the case when the fluid and the plate move in the opposite directions.  相似文献   

14.
Periodic solutions of difference-differential equations   总被引:2,自引:0,他引:2  
Summary The existence theorem of R. Nussbaum for periodic solutions of difference-differential equations is generalized to equations with a damping term. The study of such equations is motivated by recent theories of neural interactions in certain compound eyes.This work was supported by Stiftung Volkswagenwerk.  相似文献   

15.
The Governing Principle of Dissipative Processes (GPDP) formulated by Gyarmati into non-equilibrium thermodynamics is employed to study the effects of heat transfer, two dimensional, laminar and constant property fluid flow in the boundary layer with suction and injection. The flow and temperature fields inside the boundary layer are approximated by simple third degree polynomial functions and the variational principle is formulated over the region of the boundary layer. The Euler–Lagrange equations of the principle are obtained as polynomial equations in terms of momentum and thermal layer thicknesses. These equations are solvable for any given values of Prandtl number Pr, wedge angle parameter m and suction/injection parameter H. The obtained analytical solutions are compared with known numerical solutions and the comparison shows the fact that the accuracy is remarkable.  相似文献   

16.
This paper discusses the effect of thermophoretic particle deposition on the transient natural convection laminar flow along a vertical flat surface,which is immersed in an optically dense gray fluid in the presence of thermal radiation.In the analysis,the radiative heat flux term is expressed by adopting the Rosseland diffusion approximation.The governing equations are reduced to a set of parabolic partial differential equations.Then,these equations are solved numerically with a finite-difference scheme in the entire time regime.The asymptotic solutions are also obtained for sufficiently small and large time.The obtained asymptotic solutions are then compared with the numerical solutions,and they are found in excellent agreement.Moreover,the effects of different physical parameters,i.e.,the thermal radiation parameter,the surface temperature parameter,and the thermophoretic parameter,on the transient surface shear stress,the rate of surface heat transfer,and the rate of species concentration,as well as the transient velocity,temperature,and concentration profiles are shown graphically for a fluid(i.e.,air) with the Prandtl number of 0.7 at 20 C and 1.013 × 10 5 Pa.  相似文献   

17.
Solute diffusion from a fracture into a porous rock with an altered zone bordering the fracture is modeled by a system of two diffusion equations (one for the altered zone and another for the intact porous matrix) with different coefficients of effective diffusivity. Since experimental studies of diffusion into rock samples with altered zones indicate that mathematical models of diffusion based on Fick’s law do not adequately describe the concentration field in a sample, fractional order diffusion equations are chosen in this study for modeling the anomalous mass transport in the rocks. In the case of significantly higher porosity of the altered zone (e.g., this is typical for carbonates) the effective diffusivity here can be much higher than the effective diffusivity of non-altered rocks. By introducing a small parameter that is the ratio of effective diffusivities in the non-altered and altered regions and applying the technique of perturbations, approximate analytical solutions for concentrations in the altered zone bordering the fracture and in the intact surrounding rocks are obtained. Based on these solutions, different regimes of diffusion into the rocks with different physical properties are modeled and analyzed. It is shown that, using experimentally obtained data, the orders of the fractional derivatives in the differential equations can be readily calibrated for the every specific rock.  相似文献   

18.
 We consider here the problem of deriving rigorously, for well-prepared initial data and without any additional assumption, dissipative or smooth solutions of the incompressible Euler equations from renormalized solutions of the Boltzmann equation. This completes the partial results obtained by Golse [B. Perthame and L. Desvillettes eds., Series in Applied Mathematics 4 (2000), Gauthier-Villars, Paris] and Lions & Masmoudi [Arch. Rational Mech. Anal. 158 (2001), 195–211]. (Accepted June 6, 2002) Published online December 3, 2002 Communicated by Y. BRENIER  相似文献   

19.
The structure of one-dimensional magnetohydrodynamics (MHD) shock waves is studied using the Navier–Stokes equations for the non-ideal gas phase. The exact solutions are obtained for the flow variables (i.e. particle velocity, temperature, pressure and change-in-entropy) within the shock transition region. The equation of state for a non-ideal gas is considered as given by Landau and Lifshitz. The effects of the non-idealness parameter and coefficient of viscosity of the gas are analysed on the flow variables assuming the magnetic field having only constant axial component. The findings confirm that the thickness of MHD shock front increases with decreasing values of the non-idealness parameter.  相似文献   

20.
Coating of viscous and viscoelastic liquids is examined both theoretically and experimentally. A single simple geometry, a blade over a rotating roll, is considered. A perturbation solution to the Navier-Stokes equations yields a lubrication theory with first order corrections for curvature and inertia. A numerical solutions by the Finite Element Method (FEM) is compared to the analytical solutions. For Newtonian fluids, agreement between these mathematical models, and data on blade loading, is quite good.The effect of a non-Newtonian viscosity is explored by adopting a purely viscous power law model. The zeroth-order (lubrication) equations are solved by the method of Steidler and Horowitz, and predictions for coating thickness and blade loading agree quite well with those obtained from a FEM solution of the full equations of motion for a power law fluid. Data on blade loading, obtained using a strongly elastic polymer solution, are compared to these mathematical models, and discrepancies are noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号