首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The analogy between dynamics and optics had a great influence on the development of the foundations of classical and quantum mechanics. We take this analogy one step further and investigate the validity of Fermat's principle in many-dimensional spaces describing dynamical systems (i.e., the quantum Hilbert space and the classical phase and configuration space). We propose that if the notion of a metric distance is well defined in that space and the velocity of the representative point of the system is an invariant of motion, then a generalized version of Fermat's principle will hold. We substantiate this conjecture for time-independent quantum systems and for a classical system consisting of coupled harmonic oscillators. An exception to this principle is the configuration space of a charged particle in a constant magnetic field; in this case the principle is valid in a frame rotating by half the Larmor frequency, not the stationary lab frame.  相似文献   

2.
A method to construct non-dissipative non-Dirac-Hermitian relativistic quantum system that is isospectral with a Dirac-Hermitian Hamiltonian is presented. The general technique involves a realization of the basic canonical (anti-)commutation relations involving the Dirac matrices and the bosonic degrees of freedom in terms of non-Dirac-Hermitian operators, which are Hermitian in a Hilbert space that is endowed with a pre-determined positive-definite metric. Several examples of exactly solvable non-dissipative non-Dirac-Hermitian relativistic quantum systems are presented by establishing/employing a connection between Dirac equation and supersymmetry.  相似文献   

3.
A new type of quantum theory known as time-dependent PT-symmetric quantum mechanics has received much attention recently. It has a conceptually intriguing feature of equipping the Hilbert space of a PT-symmetric system with a time-varying inner product. In this work, we explore the geometry of time-dependent PT-symmetric quantum mechanics. We find that a geometric phase can emerge naturally from the cyclic evolution of a PT-symmetric system,and further formulate a series of related differential-geometry concepts, including connection, curvature, parallel transport,metric tensor, and quantum geometric tensor. These findings constitute a useful, perhaps indispensible, tool to investigate geometric properties of PT-symmetric systems with time-varying system's parameters. To exemplify the application of our findings, we show that the unconventional geometric phase [Phys. Rev. Lett. 91 187902(2003)], which is the sum of a geometric phase and a dynamical phase proportional to the geometric phase, can be expressed as a single geometric phase unveiled in this work.  相似文献   

4.
A class of non-Dirac-hermitian many-particle quantum systems admitting entirely real spectra and unitary time-evolution is presented. These quantum models are isospectral with Dirac-hermitian systems and are exactly solvable. The general method involves a realization of the basic canonical commutation relations defining the quantum system in terms of operators those are hermitian with respect to a pre-determined positive definite metric in the Hilbert space. Appropriate combinations of these operators result in a large number of pseudo-hermitian quantum systems admitting entirely real spectra and unitary time evolution. Examples of a pseudo-hermitian rational Calogero model and XXZ spin-chain are considered.  相似文献   

5.
Da-Jian Zhang 《中国物理 B》2021,30(10):100307-100307
A new type of quantum theory known as time-dependent $\mathcal{PT}$-symmetric quantum mechanics has received much attention recently. It has a conceptually intriguing feature of equipping the Hilbert space of a $\mathcal{PT}$-symmetric system with a time-varying inner product. In this work, we explore the geometry of time-dependent $\mathcal{PT}$-symmetric quantum mechanics. We find that a geometric phase can emerge naturally from the cyclic evolution of a $\mathcal{PT}$-symmetric system, and further formulate a series of related differential-geometry concepts, including connection, curvature, parallel transport, metric tensor, and quantum geometric tensor. These findings constitute a useful, perhaps indispensible, tool to investigate geometric properties of $\mathcal{PT}$-symmetric systems with time-varying system's parameters. To exemplify the application of our findings, we show that the unconventional geometric phase [Phys. Rev. Lett. 91 187902 (2003)], which is the sum of a geometric phase and a dynamical phase proportional to the geometric phase, can be expressed as a single geometric phase unveiled in this work.  相似文献   

6.
The dynamical evolution of a quantum system is described by a one parameter family of linear transformations of the space of self-adjoint trace class operators (on the Hilbert space of the system) into itself, which map statistical operators to statistical operators. We call such transformations dynamical maps. We give a sufficient condition for a dynamical map A not to decrease the entropy of a statistical operator. In the special case of an N-level system, this condition is also necessary and it is equivalent to the property that A preserves the central state.  相似文献   

7.
In quantum mechanics, the Hilbert space formalism might be physically justified in terms of some axioms based on the orthomodular lattice (OML) mathematical structure (Piron in Foundations of Quantum Physics, Benjamin, Reading, 1976). We intend to investigate the extent to which some fundamental physical facts can be described in the more general framework of OMLs, without the support of Hilbert space-specific tools. We consider the study of lattice automorphisms properties as a “substitute” for Hilbert space techniques in investigating the spectral properties of observables. This is why we introduce the notion of spectral automorphism of an OML. Properties of spectral automorphisms and of their spectra are studied. We prove that the presence of nontrivial spectral automorphisms allow us to distinguish between classical and nonclassical theories. We also prove, for finite dimensional OMLs, that for every spectral automorphism there is a basis of invariant atoms. This is an analogue of the spectral theorem for unitary operators having purely point spectrum.  相似文献   

8.
The mixing-enhancing (in the sense of Uhlmann) dynamical maps and dynamical evolution is studied. We give a necessary and sufficient condition for a dynamical map (and dynamical evolution) of a quantum system to be mixing-enhancing. In the case of a finite- dimensional Hilbert space this condition is equivalent to the condition that the dynamical map (dynamical evolution) preserve the most mixed state and the von Neumann entropy be non- decreasing. It is proved that, in contrast with the finite-dimensional case, increasing of the von Neumann entropy under a dynamical map (for any initial state) does not imply that the dynamical map is mixing-enhancing. We also give a necessary and sufficient condition for an infinitesimal generator of a norm-continuous dynamical semigroup to be mixing-enhancing.  相似文献   

9.
Rashba effect in presence of a time-dependent interaction has been considered.Then time-evolution of such a system has been studied by using Lewis–Riesenfeld dynamical invariant and unitary transformation method.So appropriate dynamical invariant and unitary transformation according the considered system have been constructed as well as some special cases have come into this article which are common in physics.  相似文献   

10.
We study the dynamical invariant for dissipative three coupled oscillators mainly from the quantum mechanical point of view. It is known that there are many advantages of the invariant quantity in elucidating mechanical properties of the system. We use such a property of the invariant operator in quantizing the system in this work. To this end, we first transform the invariant operator to a simple one by using a unitary operator in order that we can easily manage it. The invariant operator is further simplified through its diagonalization via three-dimensional rotations parameterized by three Euler angles. The coupling terms in the quantum invariant are eventually eliminated thanks to such a diagonalization. As a consequence, transformed quantum invariant is represented in terms of three independent simple harmonic oscillators which have unit masses. Starting from the wave functions in the transformed system, we have derived the full wave functions in the original system with the help of the unitary operators.  相似文献   

11.
We present an alternative quantum treatment for a generalized mesoscopic RLC circuit with time-dependent resistance, inductance and capacitance. Taking advantage of the Lewis and Riesenfeld quantum invariant method and using quadratic invariants we obtain exact nonstationary Schrödinger states for this electromagnetic oscillation system. Afterwards, we construct coherent and squeezed states for the quantized RLC circuit and employ them to investigate some of the system’s quantum properties, such as quantum fluctuations of the charge and the magnetic flux and the corresponding uncertainty product. In addition, we derive the geometric, dynamical and Berry phases for this nonstationary mesoscopic circuit. Finally we evaluate the dynamical and Berry phases for three special circuits. Surprisingly, we find identical expressions for the dynamical phase and the same formulae for the Berry’s phase.  相似文献   

12.
We investigate the possibility of assigning consistent probabilities to sets of histories characterized by whether they enter a particular subspace of the Hilbert space of a closed system during a given time interval. In particular we investigate the case that this subspace is a region of the configuration space. This corresponds to a particular class of coarse grainings of spacetime regions. We consider the arrival time problem, as a warm up, to deal with the problem of time in reparametrization invariant theories (as for example in canonical quantum gravity) which subsequently we examine. Decoherence conditions and probabilities for those application are derived. The resulting decoherence condition does not depend on the explicit form of the restricted propagator that was problematic for generalizations such as application in quantum cosmology. Closely related to our results, is the problem of tunnelling time as well as the quantum Zeno effect. Some interpretational comments conclude, and we discuss the applicability of this formalism to deal with the arrival time problem and the problem of time in general.  相似文献   

13.
14.
The extension of quantum mechanics to a general functional space (“rigged Hilbert space”), which incorporates time-symmetry breaking, is applied to construct extract dynamical models of entropy production and entropy flow. They are illustrated by using a simple conservative Hamiltonian system for multilevel atoms coupled to a time-dependent external force. The external force destroys the monotonicity of the ℋ-function evolution. This leads to a model of the entropy flow that allows a steady nonequilibrium structure of the emitted field around the unstable particles.  相似文献   

15.
In quantum theory, symmetry has to be defined necessarily in terms of the family of unit rays, the state space. The theorem of Wigner asserts that a symmetry so defined at the level of rays can always be lifted into a linear unitary or an antilinear antiunitary operator acting on the underlying Hilbert space. We present two proofs of this theorem which are both elementary and economical. Central to our proofs is the recognition that a given Wigner symmetry can, by post-multiplication by a unitary symmetry, be taken into either the identity or complex conjugation. Our analysis often focuses on the behaviour of certain two-dimensional subspaces of the Hilbert space under the action of a given Wigner symmetry, but the relevance of this behaviour to the larger picture of the whole Hilbert space is made transparent at every stage.  相似文献   

16.
17.
The dynamical invariant for a general time-dependent harmonic oscillator is constructed by making use of two linearly independent solutions to the classical equation of motion. In terms of this dynamical invariant we define the time-dependent creation and annihilation operators and relevantly introduce even and odd coherent states for time-dependent harmonic oscillator. The mathematical and quantum statistical properties of these states are discussed in detail. The harmonic oscillator with periodically varying frequency is treated as a demonstration of our general approach.  相似文献   

18.
Let M be a compact Kähler manifold equipped with a Hamiltonian action of a compact Lie group G. In this paper, we study the geometric quantization of the symplectic quotient M // G. Guillemin and Sternberg [Invent. Math. 67, 515–538 (1982)] have shown, under suitable regularity assumptions, that there is a natural invertible map between the quantum Hilbert space over M //G and the G-invariant subspace of the quantum Hilbert space over M.Reproducing other recent results in the literature, we prove that in general the natural map of Guillemin and Sternberg is not unitary, even to leading order in Planck’s constant. We then modify the quantization procedure by the “metaplectic correction” and show that in this setting there is still a natural invertible map between the Hilbert space over M // G and the G-invariant subspace of the Hilbert space over M. We then prove that this modified Guillemin–Sternberg map is asymptotically unitary to leading order in Planck’s constant. The analysis also shows a good asymptotic relationship between Toeplitz operators on M and on M // G.  相似文献   

19.
20.
Dynamical equations describing evolution of state functions in space-time of a given metric are important components of physical theories of particles. A method based on a group of the metric is used to obtain an infinite set of general dynamical equations for a scalar and analytical function representing free and spinless particles. It is shown that this set of equations is the same for any group of the metric that consists of an invariant Abelian subgroup of translations in time and space. For Galilean space-time, such group is the extended Galilei group. Using this group, it is proved that the infinite set of equations has only one subset of Galilean invariant dynamical equations, and that the equations of this subset are Schr?dinger-like equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号