首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We report a first-principles, periodic supercell analysis of oxygen adsorption, diffusion, and dissociation at the kinked Pt(321) surface. Binding energies and binding site preferences of isolated oxygen atoms and molecules have been determined, and we show that both atomic and molecular oxygen prefer binding in bridge sites involving coordinatively unsaturated kink Pt atoms. Binding energies of atomic and molecular oxygen in different sites correlate well with the average metallic Pt coordination number of Pt atoms forming each site, although differences exist between adsorbates in symmetrically similar sites due to the inherent chirality of the surface. Atomic O in the strongest binding bridge sites experiences relatively small energy barriers for diffusion to neighboring sites compared to O on Pt(111). However, due to the structure of the surface, O diffusion is only rapid between different sites around the kink Pt atom, whereas the effective long-range tracer diffusion, as determined from a simple course-grain model, is shown to be anisotropic and slower than on the Pt(111) surface. Four dissociation pathways for O(2) at low coverage are also reported and found to be in agreement with experimental observations of facile dissociation, even at low temperature.  相似文献   

2.
Using the atomic resolution of the field-ion microscope (FIM) and the single-atom identification capability of the time-of-flight atom-probe field-ion microscope, fundamental properties of solid surfaces can be investigated at atomic level. Atomic structures of many surface planes are fully resolved. The chemical composition of a surface can be determined with a single atomic layer spatial resolution. Several interactions of single surface atoms, which are basic to the understanding of many surface phenomena, such as the atom to substrate surface interaction, the adatom-adatom interaction, the adatom-impurity atom interaction, the adatom-plane edge interaction, etc. can all be studied in atomic details. The charge distribution of a single atom, as manifest in its dipole moment and polarizability, can also be studied. Great advantages of FIM investigations include the availability of atomically perfect surface planes, which can be prepared by field evaporation process, and the capability of a direct observation of the atomic images. Although some electronegative atoms cannot be imaged, the surface conditions and the state of the atoms can be characterized by the atom-probe. Basic principles and results of these single-atom FIM studies are presented and discussed.  相似文献   

3.
通过周期性层状模型, 利用密度泛函理论预测了微量杂质元素原子M(M=Fe, Si, Mg, Cu, Mn, Ga, In, Sn, Pb)在高纯铝箔(100)表面的偏聚趋势. 计算得到表面偏聚能与已有实验结果相吻合. 表面偏聚能由表面取代的微量元素原子M的位置、原子半径和金属的表面能决定. 当表面偏聚能为负时, 微量元素原子M在表面偏聚, 反之则杂质原子不发生表面聚集. 微量元素原子在铝箔表面偏聚可以使铝箔表面产生大量的缺陷和位错, 它们在铝箔腐蚀时容易成为腐蚀的形核起点, 进而增加铝箔的腐蚀发孔密度.  相似文献   

4.
Using the modified analytic embedded atom method and molecular dynamics, the binding energies and their second order finite differences (stability functions) of icosahedral Ni clusters with shell and subshell periodicity are studied in detail via atomic evolution. The results exhibit shell and subshell structures of the clusters with atoms from 147 to 250,000, and the atomic numbers corresponding to shell or subshell structures are in good agreement with the experimental magic numbers obtained in time-of-flight mass spectra of threshold photoionization, and Martin's theoretical proposition of progressive formation of atomic umbrellas. Clusters with size from 147 to 561 atoms are energetically investigated via one-by-one atomic evolution and their magic numbers are theoretically proved. For medium-size Ni clusters with 561 to 2057 atoms, the prediction of magic numbers with atomic numbers is performed on the basis of umbrella-like subshell growth in near face-edge-vertex order. The similarity of the energy curves makes it possible to extend the prediction to even larger Ni nanoclusters in hierarchical Mackay icosahedral configurations.  相似文献   

5.
IntroductionThe study of adsorbed layers of chlorine on metalsingle crystals evokes a great deal of interest, as thissurface species acts as both a promoter and a poison ofcatalytic processes[1]. There are so many studies on theinteractions between Cl ato…  相似文献   

6.
Atomic, molecular and cluster dynamics on flat and stepped surfaces   总被引:2,自引:0,他引:2  
Surface diffusion is responsible for transport of atoms at the surface. It is therefore essential for understanding many surface phenomena where transport of atoms and molecules are involved. Using the field ion microscope and scanning tunneling microscope, we have directly observed many elementary surface atomic and molecular processes at terraces and steps and have measured the activation barrier heights of these processes, and have also studied their atomic mechanisms in detail. For Si(111) surface, transport of atoms above 450°C appears to be achieved by magic clusters of about 10–15 atoms in size, and their diffusion behavior is very different from those of individual atoms and molecules. We discuss how atom dynamics affects the growth behavior, island shape transitions, and growth modes in the growth of crystals and epitaxial films.  相似文献   

7.
The introduction of a second metal, gold, into a nickel matrix can effectively improve the catalytic performance and thermal stability of the catalysts toward steam reforming of methane. To investigate the effect of Au on the adsorption properties and electronic structure of the Ni(111) surface, we chose CO as a probe molecule and examined CO adsorption on various Au/Ni surfaces. It was revealed that Au addition weakened the absorbate–substrate interactions on the Ni(111) surface. With increasing gold concentration, the binding energy declines further. The variation of the binding energies has been interpreted by exploring the electronic structure of surface nickel atoms. The effect of gold can be quantitatively characterized by the slopes of the fitting equations between the binding energy and the number of gold atoms surrounding the adsorption site. Our results show that the binding energy at top sites can be approximately estimated by counting the number of surrounding gold atoms. On one specific surface, the relative magnitude of the binding energy can be simply judged by the distance between gold and the geometrical center of the adsorption site. This empirical rule holds true for C, H, and O adsorption on the Au/Ni surface. It may be applicable to a system in which a doped atom of larger atomic size is incorporated into the host metal surface by forming a surface alloy.  相似文献   

8.
We present the results of high-energy resolution core level photoelectron spectroscopy experiments paralleled by density functional theory calculations to investigate the electronic structure of highly undercoordinated Pt atoms adsorbed on Pt(111) and its correlation with chemical activity. Pt4f(7/2) core level binding energies corresponding to atoms in different configurations are shown to be very sensitive not only to the local atomic coordination number but also to the interatomic bond lengths. Our results are rationalized by introducing an indicator, the effective coordination, which includes both contributions. The calculated energy center of the valence 5d-band density of states, which is a well known depicter of the surface chemical reactivity, shows a noteworthy correlation with the Pt4f(7/2) core level shifts and with the effective coordination.  相似文献   

9.
Studies on the adsorption of gases such as xenon, hydrogen, nitrogen, and carbon monoxide on the surface of a single crystal of tungsten with the aid of field-emission and field-ion microscopy have, in the past few years, led to new, fundamental insights into chemisorption and heterogeneous catalysis. Important phenomena which were discoverd and elucidated by these techniques include the pronounced face specificity of the adsorption, the fact that several different adsorption complexes of a gas are found on one and the same crystal face, and the rearrangement of the surface atoms through chemisorption. Many of the interpretations thus gained for the systems studied can also be generalized for other chemisorption complexes.  相似文献   

10.
The growth of titanium oxide nanoparticles on reconstructed Au(111) was investigated by scanning tunneling microscopy and x-ray photoelectron spectroscopy. Ti was deposited by physical-vapor deposition at 300 K. Regular arrays of titanium nanoparticles form by preferential nucleation of Ti at the elbow sites of the herringbone reconstruction. The titanium oxide nanoclusters were synthesized by subsequent exposure to O(2) at 300 K. Two-and three-dimensional titanium oxide nanocrystallites form during annealing in the temperature range from 600 to 900 K. At the same time, the Au(111) surface assumes a serrated 110-oriented step-edge morphology suggesting step-edge pinning by titanium oxide nanoparticles. The oxidation state of the titanium oxide nanoparticles varies with annealing temperature. Specifically, annealing to 900 K results in the formation of stoichiometric TiO(2) nanocrystals as judged by the Ti(2p) binding energies measured in the x-ray photoelectron data. The nanodispersed TiO(2) on Au(111) is an ideal system to test the various models proposed for the enhanced catalytic reactivity of supported Au nanoparticles.  相似文献   

11.
XPS inner shell. satellite peaks and its valence band spectra of the pyridoxygen complexes of rare earth decahydrodecaborate nave been investigated. The binding energies of the ligand atoms show variation with increasing atomic number of rare earth elements and a specific "tetrad effect" is observed in the plot of binding energies of ligand atoms versus rare earth atomic numbers. The XPS valence band spectra of different rare earth complexes are characteristic for the rare earth elements.  相似文献   

12.
Focusing on the competing pathways of methanol oxidation on platinum and platinum/gold bimetallic catalysts, we explore a novel density functional theory (DFT)‐based approach to the study of reactions on catalyst surfaces. Traditionally, DFT has been used to compute binding energies of products and intermediates as proxies for catalytic activity, and to compute full reaction pathways and their activation energy barriers. Merging the computational simplicity and intuitive clarity of binding energy calculations with the site sensitivity of transition state calculations, we construct maps of the binding energies of relevant atoms and molecules at all sites on a surface. We show that knowledge of the arrangement of strong and weak binding sites on a surface is powerful in rationalizing the ease with which a reaction step proceeds on a given local motif of surface atoms. We highlight the prospects and challenges of this approach toward catalyst screening and prediction.  相似文献   

13.
用Visual C++语言设计制作了分析晶体及其表面的BVStr软件.它的最大特点在于以Pauling键价理论为基础,并适用于PC机的Windows操作系统.软件在重点对晶体体相的(包括配位)结构和表面结构进行计算的同时,还计算了它们的键价数据.另外软件还配有二维和三维结构演示功能以及某些结构计算小工具.因此本软件不仅适合于研究体相及表相结构的稳定性及其演化,同时也可以用于教学.  相似文献   

14.
In this paper, geometric bulk parameters, bulk moduli, energy gaps and relative stabilities of the TiO2 anatase and rutile phases were determined from periodic DFT calculations. Then, for the rutile phase, structures, relaxations and surface energies of the (110), (100), (101) and (001) faces were computed. The calculated surface energies are consistent with the natural rutile powder composition, even if a dependence on the number of layers of the slab used to model the surface was identified. Internal constraints, consisting in freezing some internal layers of the slab to atomic bulk positions, were thus added to mimic the bulk hardness in order to stabilise the computed surface energies for thinner systems. In parallel, the influence of pseudopotentials was studied and it appears that four valence electrons for titanium atoms are sufficient. The aim of this study was to optimise accurate rutile TiO2 surface models that will be used in further calculations to investigate water and uranyl ion sorption mechanisms.  相似文献   

15.
杨儒  胡天斗 《分子催化》1998,12(4):241-245
采用XPS和EXAFS方法,研究了以sol-gel法制得的超累粉体SiO2为载体,用化学还原沉积法制备的负载型非晶态Cu/SiO2催化剂在甲酸甲酯氢解反应前后的表面结构和局域结构。结果表明,非晶态样品中的铜原子以零价铜的形式存在,但配位数却大幅度地低于铜樯档,意味着铜原子在高比表面超细SiO2载体上处于高分散的非晶状态,表面悬空键显著增多,表面能增大,导致配位键收缩。  相似文献   

16.
张曙光  陈瑜  王风云 《化学学报》2007,65(20):2235-2242
用分子动力学(MD)方法, 模拟计算了5种铜缓蚀剂[苯并三氮唑(BTA)、苯并三氮唑-5-羧酸甲酯(MBTC)、苯并三氮唑-5-羧酸丁酯(BBTC)、苯并三氮唑-5-羧酸己酯(HBTC)、苯并三氮唑-5-羧酸辛酯(OBTC)]与Cu2O晶体的相互作用. 结果发现, 中性条件下缓蚀剂分子与Cu2O晶体的结合能均大于酸性条件下的数值, 但两种条件下结合能的大小排序均为OBTC>HBTC>BBTC>MBTC>BTA. 对体系各种相互作用以及对关联函数g(r)的分析表明, 体系结合能主要由库仑作用提供, Cu2O晶体中的Cu原子与缓蚀剂分子中的N原子之间形成了配位键. 在与Cu2O(001)晶面结合过程中, BTA及其衍生物分子发生了扭曲变形, 但形变能远小于体系的非键相互作用能.  相似文献   

17.
The surface energies of talc and chlorite is computed using a simple model, which uses the calculation of the electrostatic energy of the crystal. It is necessary to calculate the atomic charges. We have chosen to follow Henry's model of determination of partial charges using scales of electronegativity and hardness. The results are in correct agreement with a determination of the surface energy obtained from an analysis of the heat of immersion data. Both results indicate that the surface energy of talc is lower than the surface energy of chlorite, in agreement with observed behavior of wettability. The influence of Al and Fe on this phenomenon is discussed. Surface energy of this type of solids seems to depend more strongly on the geometry of the crystal than on the type of atoms pointing out of the surface; i.e., the surface energy depends more on the physics of the system than on its chemistry.  相似文献   

18.
在以往十多年中,XPS技术用于稀土元素氧化物与卤化物,探讨了稀土元素的内壳谱及其伴峰现象,但对稀土元素配合物的研究报导甚少。本文报导我们新合成的稀土元素-吡啶氧正离子硼氢配合物[Ln(PyO)_7]_2(B_(10)H_(10))_3的XPS及其价带谱结果,而这些研究尚未见文献报导。  相似文献   

19.
We report on a high energy resolution X-ray photoelectron spectroscopy plus supersonic molecular beam investigation of O/Ag(210). Two components are detected in the O1s spectra upon O2 adsorption, at binding energies EB=527.7 and 529.6 eV. The former peak persists up to 470 K, while the latter one decreases abruptly above 280 K. Comparison with a previous vibrational spectroscopy investigation on the same system (L. Vattuone, et al. Phys. Rev. Lett. 2003, 90, 228302) allows to assign both features to atomic oxygen. The low-energy peak is identified with adatoms, while the other is correlated to O atoms in subsurface sites. A minor contribution at the same binding energy, due to carbonates, is quantified by inspection of the C1s region and shows a different temperature behavior with respect to oxygen. Oxygen segregation into the subsurface region is observed when heating the crystal in the presence of supersurface oxygen.  相似文献   

20.
Plane-wave density functional theory calculations were performed to investigate the binding and diffusion of hydrogen on three flat Ni surfaces, Ni(100), Ni(110), and Ni(111), and two stepped Ni surfaces, Ni(210) and Ni(531). On each surface, the favored adsorption sites were identified by considering the energy and stability of various binding sites and zero-point energy corrections were computed. Binding energies are compared with experimental and theoretical results from the literature. Good agreement with experimental and previous theoretical data is found. At surface coverages where adsorbate-adsorbate interactions are relatively weak, the binding energy of H is similar on the five Ni surfaces studied. Favorable binding energies are observed for stable surface sites, while subsurface sites have unfavorable values relative to the gas phase molecular hydrogen. Minimum energy paths for hydrogen diffusion on Ni surfaces and into subsurface sites were constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号