首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Using normal human fibroblasts we have determined the ability of far (254 nm), mid (310 nm) or near (365 nm) UV radiation to: (i) induce pyrimidine dimers (detected as UV endonuclease sensitive sites) and DNA single-strand breaks (detected in alkali); (ii) elicit excision repair, monitored as unscheduled DNA synthesis (UDS); and (iii) reduce colony-forming ability. Unscheduled DNA synthesis studies were also performed on dimer excision-defective xeroderma pigmentosum (XP) cells, and the survival studies were extended to include XP and Bloom's syndrome (BS) strains. UV-induced cell killing in normal, BS and XP cells was found to relate to an equivalent dimer load per genome after 254 or 310 nm exposure, whereas at 365 nm the lethal effects of non-dimer damage appeared to predominate. Lethality could not be correlated with DNA strand breakage at any wavelength. The two XP strains examined showed the same relative UDS repair deficiency at the two shorter wavelengths in keeping with a predominant role for pyrimidine dimer repair in the expression of UDS. However, UDS was not detected in 365 nm UV-irradiated normal and XP cells despite dimer induction; this effect was due to the inhibition of DNA repair functions since 365 nm UV-irradiated normal cells showed reduced capacity to perform UDS subsequent to challenge with 254 nm UV radiation.
In short, the near UV component of sunlight apparently induces biologically important non-dimer damage in human cells and inhibits DNA repair processes, two actions which should be considered when assessing the deleterious actions of solar UV.  相似文献   

2.
The effect of UV/visible/NIR light (380/450/530/650/808/1064 nm) on ROS generation, mitochondrial activity and viability is experimentally compared in human neuroblastoma cancer cells. The absorption of photons by mitochondrial photoacceptors in Complexes I, III and IV is in detail investigated by sequential blocking with selective pharmaceutical blockers. Complex I absorbs UV/blue light by heme P450, resulting in a very high rate (14 times) of ROS generation leading to cell death. Complex III absorbs green light, by cytochromes b, c1 and c, and possesses less ability for ROS production (seven times), so that only irradiation lower than 10 mW cm−2 causes an increase in cell viability. Complex IV is well-known as the primary photoacceptor for red/NIR light. Light of 650/808 nm at 10–100 mW cm−2 generates a physiological ROS level about 20% of a basal concentration, which enhance mitochondrial activity and cell survival, while 1064 nm light does not show any distinguished effects. Further, ROS generation induced by low-intensity red/NIR light is compared in neurons, immune and cancer cells. Red light seems to more rapidly stimulate ROS production, mitochondrial activity and cell survival than 808 nm. At the same time, different cell lines demonstrate slightly various rates of ROS generation, peculiar to their cellular physiology.  相似文献   

3.
Abstract— The ciliate Blepharisma japonicum was exposed to artificial polychromatic and monochromatic UV radiation to evaluate the relative roles of UVB (280–315 nm UV radiation) and UVA (315–400 nm UV radiation) in altering its motility and photobehavior and to determine absolute weighting coefficients for these effects in the UVB range. Under polychromatic UV irradiation B. japonicum cells showed a severe reduction of cell speed and of the capability to respond to light stimuli. At low doses, however, UV caused a significant increase in the average velocity of a cell population. The UVB exclusion experiments indicated that UVA does not significantly alter motility and photoresponsiveness. The increase and the subsequent decrease in cell velocity was observed also under monochromatic irradiation at 281, 290 and 300 nm, whereas at 310 nm cells swim faster up to the highest photon flux density used. The cell capability of reacting to photic stimuli, conversely, steadily declined with increasing photon flux density at all the tested UVB wavelengths. The action spectra for the alteration of cell velocity and the impairment of photoresponsiveness show that the lower the irradiation wavelength, the more remarkable are the UVB effects and suggest different targets for the increase and the decrease in cell velocity.  相似文献   

4.
We examined the effects of ultraviolet (UV) radiation in combination with high levels of infrared (IR) radiation on the spectral transmittance of plastic filters. The biological action spectrum for damage to the human eye and skin changes dramatically in the 300-400 nm wavelength range. Cut-off filters used in this region to shape the spectrum of exposure sources are thus critical to the design of experiments which use broadband light sources. The changes in transmittance of three types of plastic filters were observed over an exposure period of 1000 h. One set of three filters was exposed mainly to UV radiation, while the other set was exposed to UV radiation plus IR radiation. Filters exposed to both UV and IR radiation showed spectral changes in their transmittance, while the filters exposed to UV only showed no measurable changes.  相似文献   

5.
To determine the action spectrum for photoinduction of the ultraviolet (UV)-absorbing mycosporine-like amino acid shinorine, specimens of the marine red alga Chondrus crispus were irradiated with monochromatic light of various wavelengths using the Okazaki large spectrograph at the National Institute for Basic Biology, Okazaki, Japan. Fluence response curves were determined for the wavelengths between 280 and 750 nm, by irradiating the algae with monochromatic light for 10 h, followed by 4 h of 25 micromol m(-2) s(-1) photosynthetically active radiation and 10 h darkness. Samples were taken after the second exposure interval. A linear correlation between fluence rate and accumulated shinorine concentration was detected for wavelengths between 350 and 490 nm in the fluence rate range of 20-30 micromol m(-2) s(-1), whereas there was no induction above 490 nm. Below 350 nm a decline in shinorine concentration could be observed at fluence rates above 30 micromol m(-2) s(-1), probably due to an inhibition of photosynthetic activity and a subsequent impairment of shinorine biosynthesis. The constructed action spectrum indicated that the photoreceptors mediating shinorine photoinduction might be an unidentified UV-A-type photoreceptor with absorption peaks at 320, 340 and 400 nm.  相似文献   

6.
Irradiation of nitrosyl bromide BrNO (4) with light of the wavelength lambda = 248 nm and nitrosyl chloride CINO (6) with lambda = 193 nm in an argon matrix at 10 K leads to the corresponding isomers isonitrosyl bromide BrON (5) and isonitrosyl chloride CION (7). Both new compounds 5 and 7 have been identified by comparison of the experimental and calculated (BLYP/6-311 + G*) IR spectra. Nitrosyl fluoride FNO (8) could not be transferred into isonitrosyl fluoride FON (9). The back reactions 5-->4 and 7-->6 can be initiated by UV (lambda > 310 nm), visible or IR light. The retransformation also occurs spontaneously in the matrix at 10 K under exclusion of any UV/Vis or IR radiation. Surprisingly, the reaction rates of these spontaneous back reactions are temperature independent between 8.5 and 25 K. The mechanism of these processes is discussed.  相似文献   

7.
陈素明  吕锡恩 《应用化学》1992,9(1):115-117
卟啉自由碱通常是紫或紫红色固体,遇酸则变成绿色,对光敏感。人工合成的卟啉最简单的是四苯基卟啉(H_2TPP)。美国专利曾将卟啉类化合物作为光氧化成象体系的增感剂。我们试图将H_2TPP作为VMD片(一种新型非银盐成象体系)的增感剂,未获成功。  相似文献   

8.
Cell survival, synergistic interaction, liquid-holding recovery (LHR) kinetics and inactivation forms after the simultaneous treatment with UV light (254 nm) and various high temperatures were studied in diploid yeast cells Saccharomyces cerevisiae. The synergistic interaction was observed within a certain temperature range in which there was a temperature that maximizes the synergistic effect. The LHR study revealed that both the extent and the rate of recovery greatly decreased with the increase in exposure temperature. A quantitative approach describing the LHR process as a decrease in the effective radiation dose was used to estimate the probability of recovery per unit time and the irreversible component of damage. Using the experimental data obtained and the mathematical model described, it was shown that the irreversible component, i.e. the fraction of cells incapable of recovery, increased with the exposure temperature, whereas the recovery constant, i.e. the probability of recovery per unit time, was independent of the exposure temperature. The increase in the irreversible component was accompanied by an increase in cell death without postirradiation division. It is concluded based on this that the synergistic interaction of UV light radiation and hyperthermia in yeast cells is not related to the impairment of the recovery process itself and that it may be attributed to an increased yield of the irreversible damage.  相似文献   

9.
Solar ultraviolet (UV) light within 280–320 nm (UVB) is the primary cause for virus inactivation in the atmosphere. Only the effect of the direct component has been previously evaluated. We developed a simple regression model to estimate the inactivation of a virus due to direct (unscattered), diffuse (scattered) and total (direct + diffuse) components of solar UV (daily integrated irradiances). The model predicts the maximum number of radiation-days a virus will survive at a given altitude above the ground in rural and urban environments under clear skies. We explored the effect of several environmental variables: visibility, altitude and ground reflectivity. We found that the effect of diffuse radiation on virus inactivation was larger than the direct component. The diffuse irradiance increased with ground albedo (mainly due to reflection of the direct attenuated solar off the ground) and decreased with increased visibility (proportional to aerosol loading in the atmosphere). The diffuse component increased with altitude, but the ratio of diffuse to the total decreased with increased altitude, highlighting the importance of the diffuse component of UV near the ground. Our model may help public health studies in predicting and understanding the effect of environmental parameters on the survival of germs.  相似文献   

10.
Abstract— Light-induced anthocyanin formation in Zea mays L. coleoptiles was investigated in seven different varieties of this species. Under the test conditions, four varieties showed practically no response to any waveband used (UV, continuous red and continuous far-red), two responded strongly to both UV and far-red, and one showed a strong response only to far-red. The radiation-sensitive varieties showed, however, only a very weak response to continuous red light. In those varieties sensitive to far-red light, a pretreatment with continuous red light led to a greatly enhanced response to UV or in one case the manifestation of a response to UV that was previously lacking. Further investigations in one radiation-sensitive variety (INRA) showed that the UV response was to UV-B radiation below 350 nm. The UV response, as well as the far-red and blue responses in this variety, showed fluence-rate dependency. Red light was almost ineffective and showed only a very weak fluence-rate dependency.  相似文献   

11.
Photochemistry and phototoxicity of aloe emodin   总被引:2,自引:0,他引:2  
Photochemical pathways leading to the phototoxicity of the aloe vera constituent aloe emodin were studied. The results indicate a photochemical mechanism involving singlet oxygen to be the most likely pathway responsible for the observed phototoxicity. Aloe emodin was found to efficiently generate singlet oxygen when irradiated with UV light (phidelta = 0.56 in acetonitrile). The survival of human skin fibroblast cells in the presence of aloe emodin was found to decrease upon irradiation with UV light. A further decrease in cell survival was observed in D2O compared with H2O, suggesting the involvement of singlet oxygen as the primary pathway. Laser flash photolysis experiments were also carried out on aloe emodin alone and in the presence of various biological substrates. Aloe emodin proved to be relatively photostable (phi = 1 x 10(-4)) and a poor photo-oxidant (E*red = +1.02 V). Only absorption bands caused by the triplet state of aloe emodin (lambdamax = 480 nm) and the aloe emodin conjugate base (lambdamax = 520 nm) were observed in the transient spectra.  相似文献   

12.
Abstract— Exposure of ICR 2A frog cells to photoreactivating light after treatment with monochromatic ultraviolet (UV) radiation in the 252–313 nm range resulted in an increase in survival with similar photoreactivable sectors for each of the wavelengths tested. As photoreactivating enzyme is specific for the repair of pyrimidine dimers in DNA, these findings support the hypothesis that these are critical lesions responsible for killing of cells exposed to UV radiation in this wavelength range. The action spectra for cell killing and production of UV-endonuclease sensitive sites were similar to the DNA absorption spectrum though not identical. Because the number of endonuclease sensitive sites is a reflection of the yield of pyrimidine dimers, these data also suggest that the induction of dimers in DNA by UV radiation in the 252–313 nm range is the principal event leading to cell death.  相似文献   

13.
Abstract— The action spectrum for cell killing by UV radiation in human lens epithelial (HLE) cells is not known. Here we report the action spectrum in the 297–365 nm region in cultured HLE cells with an extended lifespan (HLE B-3 cells) and define their usefulness as a model system for photobiological studies. Cells were irradiated with monochromatic radiation at 297, 302, 313, 325, 334 and 365 nm. Cell survival was determined using a clonogenic assay. Analysis of survival curves showed that radiation at 297 nm was six times more effective in cell killing than 302 nm radiation; 297 nm radiation was more than 260, 590, 1400 and 3000 times as effective in cell killing as 313, 325, 334 and 365 nm radiation, respectively. The action spectrum was similar in shape to that for other human epithelial cell lines and rabbit lens epithelial cells. The effect of UV radiation on crystallin synthesis was also determined at different wavelengths. To determine whether exposure to UV radiation affects the synthesis of β-crystallin, cells were exposed to sublethal fluences of UV radiation at 302 and 313 nm, labeled with [35S]methionine and the newly synthesized βY-crystallin was analyzed by immunoprecipitation and western blotting using an antibody to β-crystallin. The results show a decrease in crystallin synthesis in HLE cells irradiated at 302 and 313 nm at fluences causing low cytotoxicity. The effect of radiation on membrane perturbation was determined by measuring enhancement of synthesis of prostaglandin E2 (PGE2). Synthesis of PGE2 occurs at all UV wavelengths tested in the 297–365 nm region. The slope of the PGE2 response curves was higher than that of cell killing curves in cultured HLE cells. These data show that cultured HLE cells with extended lifespan are a suitable system for investigating photobiological responses of cells to UV radiation.  相似文献   

14.
Chemistry and Chemical Engineer School, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China  相似文献   

15.
The IR spectra of cyanethylated and UV irradiated polyamide fibres in a wide spectral range, and their light-resistance and tensile strength were investigated. Cyanethylation was found to proceed due to the loss of a hydrogen atom from the NH group.UV radiation was shown to be responsible for chain development which in turn is a cause of the strength and light resistance of cyanethylated PA fibre, as compared to the initial sample.The spectral changes in the investigated ranges of PA fibres due to cyanethylation as well as due to UV radiation were interpreted.  相似文献   

16.
Abstract— Ultraviolet-light screening potential of Norway spruce (Picea abies [L.] Karst.) needles was investigated by UV-spectroscopic, microscopic, fluorescence spectroscopic techniques as well as by HPLC, mass spectrometry and NMR spectroscopy. Results showed four potential barriers of UV screening by Norway spruce needles: (1) UV-light screening via reflectance of UV/violet light by epidermis, (2) UV-light screening via reduction of transmission of UV light by special anatomical arrangement of the epidermal cells containing the UV-screening allomelanins as well as by the light-reflecting hyaline hypodermal cells, (3) conversion of UV light by epidermis into photosynthetically active radiation (PAR; blue and red spectral bands) via fluorescence and (4) UV-light screening by absorption of UV light by UV-screening substances contained in the epidermis, whereby the latter was found to be the most important UV-screening mechanism. Staining of needle cross sections with Naturstoffreagenz A showed the localization of bound flavonoids and its derivatives in the cell walls of the outer epidermal cell layer as revealed by confocal laser scanning microscopy. By fluorescence spectroscopy and confocal laser scanning microscopy, the conversion of UVA light into PAR in the epidermis was related to various UV-screening substances contained in the epidermis. The methanol-soluble UV-absorbing substances were found to create novel UV-screening barrier zones: UVC, >200–253 nm; UVC/UVB, >253–300/303 nm; and UVB/UVA, >300–362/368 nm in epidermis as well as in mesophyll (±vascular bundles) tissues, suggesting the protective functions of epidermis for the underlying mesophyll as well as of mesophyll for the underlying vascular bundles. The following sequence of efficiency of UV-screening barrier zones of the methanol-soluble extracts of the needle epidermis and mesophyll (± vascular bundles) for various UV-spectral bands was detected: UVC screening at less than 265 nm > UVC screening at 265–280 nm > UVB screening at 280–320 nm > UVA screening at 280–320 nm, whereby the UV screening at 280–320 nm was suggested as the most relevant barrier against enhanced UVB radiation. A blend of various UV-screening substances occurred in the methanol-soluble fractions of needle epidermis, whereby p-hydroxybenzoic acid 4-O-β-D-glucopyranoside, picein, (+)-catechin, p-hydroxyacetophenone, benzoic acid and astragalin were identified as UVC/UVB-screening substances; picein, (+)-catechin, astringin, p-hydroxyacetophenone and astragalin(s) as UVB-screening substances and astragalin(s) as UVA/B-screening substances. Alkaline hydrolysis of methanol-insoluble epidermal cell wall fractions released p-coumaric acid, ferulic acid and as-tragalin(s) as major UVB-screening substances. Loss of vitality of Norway spruce trees (forest decline disease) led to a significant reduction of UVB (315 nm)-screening ability of methanol-soluble fractions from epidermis, mesophyll (±vascular bundles) and whole needles. The HPLC analysis showed that the loss of vitality is due to a reduction in accumulation of UVB-absorbing substances, mainly picein, (+)-catechin, isorhapontin and astragalin(s) in the epidermis of needles from the second needle year in accordance with the detected loss of UVB-screening ability. It is concluded that the natural UV-screening mechanisms of Norway spruce needles are highly complex but mainly actively mediated by the ability of methanol-soluble UV-absorbing substances to form variable UVB-AJVA-screening barrier zones and passively by the ability of epidermal cell wall-bound UV-screening substances to screen UV light, whereby in the epidermis a conversion of excess UV light into PAR takes place.  相似文献   

17.
Abstract Melanocytes (skin type 2) and keratinocytes were irradiated with UV light of 254, 297, 302, 312 and 365 nm and the survival was measured. Clone-forming ability was chosen as the parameter for cell survival. Melanocytes were found to be less sensitive to UV light than keratinocytes (a difference of a factor 1.22-1.92 for the UV-C and UV-R wavelengths (254, 297, 301 and 312 nm) and a factor 6.71 for the UV-A wavelength (365 nm). Because melanin does not appear to protect against the induction of pyrimidine dimers the difference between melanocytes and keratinocytes in the UV-C and UV-B region could not be explained by the presence of melanin in the melanocytes. The relatively small difference can be explained by the longer cell cycle of melanocytes, which provides more time for the melanocytes to repair UV damage. In the UV-A region the difference between melanocytes and keratinocytes was much larger, suggesting that besides the longer cell cycle some additional factors must be involved in protection against UV-A light.  相似文献   

18.
A 1 m diameter water lens was used to focus solar radiation, giving an 8-fold concentration of the total spectrum and a cytocidal flux similar to that of laboratory UV sources. Survival curves for human melanoma cells were similar for sunlight and 254 nm UV, in that D q, was usually larger than D o. An xeroderma pigmentosum lymphoblastoid line was equally sensitive to both agents and human cell lines sensitive to ionizing radiation (lymphoblastoid lines), crosslinking agents or monofunctional alkylating agents (melanoma lines) had the same 254 nm UV and solar survival responses as appropriate control lines. Two melanoma sublines derived separately by 16 cycles of treatment with sunlight or 254 nm UV were crossresistant to both agents. In one melanoma cell line used for further studies, DNA strand breaks and DNA-protein crosslinking were induced in melanoma cells by sunlight but pyrimidine dimers (paper chromatography) and DNA interstrand crosslinking (alkaline elution) could not be detected. The solar fiuence response of DNA repair synthesis was much less than that from equitoxic 254 nm UV, reaching a maximum near the D o value and then declining; semiconservative DNA synthesis on the other hand remained high. These effects were not due to changes in thymidine pool sizes. Solar exposure did not have a major effect on 254 nm UV-induced repair synthesis.  相似文献   

19.
Organic molecules can absorb or emit light in UV, visible and infra-red (IR) region of solar radiation. Fifty percent of energy of solar radiation lies in the IR region of solar spectrum and extended π-conjugated molecules containing low optical band gap can absorb NIR radiations. Recently IR molecules have grabbed the attention of synthetic chemists. Although only few molecules have been reported so far such as derivative of BODIPY, naphthalimide, porphyrins, perylene, BBT etc., they have shown highest absorbing capacity towards greater than 1100 nm. These compounds have potential applications in different fields, such as for biomedical and optoelectronic applications. In this review, we present different classes of light-harvesters with harvesting range above 1000 nm.  相似文献   

20.
Abstract— Photoprotecting effects of near UV radiations (300–400 nm, maximum at 360 nm) against far UV radiations (primarily 254 nm) have been studied in Escherichia coli B/r cells in minimal medium with glycerol as a carbon source. Near UV light (105 Jm-2) has a negligible effect on survival, but causes transitory inhibition of respiration, growth, DNA, RNA, and protein syntheses and cell division. Far UV (52 J m-2) reduces survival to about 0.5 per cent; respiration, growth and RNA and protein syntheses proceed for about 60 min, after which they nearly cease for several hours. Near UV given before this fluence of far UV increases survival 10-fold and the above processes resume at times and with kinetics characteristic of those produced by lower fluences of far UV. Single-strand breaks appear in the DNA of both unprotected and photoprotected cells; repair of the breaks is essentially complete in protected but not unprotected cells. The viability kinetics for far-UV-irradiated cells with and without photoprotecting treatment are identical except that the curve for the latter is displaced upward about 1 log; exponential increases (cell division) begin at 120 min in each case. The data suggest that, in B/r cells grown under our particular conditions, namely in minimal medium with glycerol, photoprotection is not the result of growth or division delays, but reflects an increased repair capability due to continued respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号