共查询到7条相似文献,搜索用时 17 毫秒
1.
In this paper, yield functions describing the anisotropic behavior of textured metals are proposed. These yield functions are extensions to orthotropy of the isotropic yield function proposed by Cazacu et al. (Cazacu, O., Plunkett, B., Barlat, F., 2006. Orthotropic yield criterion for hexagonal close packed metals. Int. J. Plasticity 22, 1171–1194). Anisotropy is introduced using linear transformations of the stress deviator. It is shown that the proposed anisotropic yield functions represent with great accuracy both the tensile and compressive anisotropy in yield stresses and r-values of materials with hcp crystal structure and of metal sheets with cubic crystal structure. Furthermore, it is demonstrated that the proposed formulations can describe very accurately the anisotropic behavior of metal sheets whose tensile and compressive stresses are equal. 相似文献
2.
Asymmetric sandwich technology can be applied in the design of lightweight, non-pressurized aeronautical structures such as
those of helicopters. A test rig of asymmetric sandwich structures subjected to compression/shear loads was designed, validated,
and set up. It conforms to the standard certification procedure for composite aeronautical structures set out in the “test
pyramid”, a multiscale approach. The static tests until failure showed asymmetric sandwich structures to be extremely resistant,
which, in the case of the tested specimen shape, were characterized by the absence of buckling and failure compressive strains
up to 10,000 μ strains. Specimens impacted with perforation damage were also tested, enabling the original phenomenon of crack
propagation to be observed step-by-step. The results of the completed tests thus enable the concept to be validated, and justify
the possibility of creating a much larger machine to overcome the drawbacks linked to the use of small specimens. 相似文献
3.
The monotonic and cyclic mechanical behavior of O-temper AZ31B Mg sheet was measured in large-strain tension/compression and simple shear. Metallography, acoustic emission (AE), and texture measurements revealed twinning during in-plane compression and untwinning upon subsequent tension, producing asymmetric yield and hardening evolution. A working model of deformation mechanisms consistent with the results and with the literature was constructed on the basis of predominantly basal slip for initial tension, twinning for initial compression, and untwinning for tension following compression. The activation stress for twinning is larger than that for untwinning, presumably because of the need for nucleation. Increased accumulated hardening increases the twin nucleation stress, but has little effect on the untwinning stress. Multiple-cycle deformation tends to saturate, with larger strain cycles saturating more slowly. A novel analysis based on saturated cycling was used to estimate the relative magnitude of hardening effects related to twinning. For a 4% strain range, the obstacle strength of twins to slip is 3 MPa, approximately 1/3 the magnitude of textural hardening caused by twin formation (10 MPa). The difference in activation stress of twinning versus untwinning (11 MPa) is of the same magnitude as textural hardening. 相似文献
4.
Akhtar S. Khan Thomas Gnäupel-HeroldRaja K. Mishra 《International Journal of Plasticity》2011,27(5):688-706
In order to study the behavior of material under finite deformation at various strain rates, the responses of AZ31 Mg sheet are measured under uniaxial (tension and compression) and multiaxial (simple shear) loadings along rolling direction (RD), 45° to rolling direction (DD), 90° to rolling direction (TD), and normal to the sheet (ND) to large strains. The material exhibits positive strain rate sensitivity (SRS) at room and elevated temperatures; the SRS is more pronounced at high temperatures and lower strain rates. The r-value of the material under tensile loading at room temperatures is higher in TD at lower strain rate. Texture measurements on several failed specimens are reported under tension and simple shear after finite plastic deformation of about 20% equivalent strain. The as-received material exhibits a strong fiber with equal fractions of grains having the c-axis slightly tilted away from the sheet normal towards both +RD and −RD. Pole figures obtained after tensile loading along the rolling direction (RD) show that the texture of the material strengthens even at low strains, with c-axis perpendicular to the sheet plane and prism planes lining up in a majority of grains. However, the tensile loading axis along TD does not lead to similar texture strengthening; the c-axis distribution appears to be virtually unchanged from the virgin state. The pole figures obtained after in-plane compression along RD brings the c-axes of the grains parallel to the loading direction. The pole figures after simple shear loading show that the c-axis rotates to lie on the sheet plane consistent with a compression axis 45° away on the sheet plane. 相似文献
5.
Toshihiko Kuwabara Yutaka Kumano Jindra Ziegelheim Ikuya Kurosaki 《International Journal of Plasticity》2009,25(9):1759-1776
In-plane tension and compression experiments on copper alloy sheets (phosphor bronze) and 6000 series aluminum alloy sheets (AA6016-T4) were conducted using a specially designed testing apparatus. The apparatus is equipped with comb-type dies so that stress–strain curves of a sheet specimen subjected to tension followed by compression, and vice versa, can be measured without buckling of the specimen, as well as those for monotonic tension and compression. A difference was observed in the flow stresses between tension and compression for the as-received copper alloy, but not for the aluminum alloy. Moreover, stress reversal tests, such as tension followed by compression and compression followed by tension, were carried out in order to measure the Bauschinger effect. In the second part of the experiment, bending moment–curvature diagrams were measured for the as-received and pre-stretched specimens. The bending moment–curvature diagrams were compared with those calculated using the stress–strain curves obtained from the tension–compression tests, and were in good agreement with those calculated with the tension–compression asymmetry and the Bauschinger effect correctly reproduced. 相似文献
6.
碳纤维增韧的陶瓷基复合材料在高温高应变率下的压缩力学行为 总被引:1,自引:0,他引:1
利用高温电子万能试验机和具有高温同步自组装功能的Hopkinson压杆对二维C/SiC复合材料进行了应变率为10-4~103s-1,温度为293~1273K下的单轴压缩力学性能测试。实验结果表明:二维C/SiC复合材料破坏时并未表现出典型的脆性破坏,而是在应力达到压缩强度时出现了显著的应变软化,在经历了较大的变形后才最终破坏,同时材料还表现出良好的高温承载能力及一定的温度和应变率依赖性。随着温度的升高,复合材料的压缩强度呈降低的趋势。与准静态下室温压缩时相比,材料在1273K 时的压缩强度的降低程度不超过30%,但压缩强度对应变率的敏感性随着温度的升高而增大。由于高温下试样氧化,C/SiC复合材料压缩强度对应变率的敏感性在温度为1073K时显著增大。 相似文献
7.
This study presents an experimental investigation of the large plastic deformation of poly(ethylene terephthalate) (PET) submitted to plane strain compression. PET samples, obtained by injection moulding, annealed and non-annealed, were deformed using a specific compression device developed for this purpose. The obtained stress–strain curves at different temperatures and strain rates are useful for engineering applications and show a significant temperature dependence and a minor dependence on the strain rate. A softening temperature as a minimum temperature necessary to initiate deformation when a minimum, almost zero, stress is applied is introduced. This temperature, at the zero stress and strain limit, we denominate “Stress–Strain independent softening Temperature (T
SOF)”. The T
SOF values, 104 and 113°C for non-annealed and annealed PET, respectively, have been obtained using three different strain rates, indicating that the property is sensitive to the thermal history of the material. 相似文献