首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The performance of proposed antihydrogen spectroscopy or gravity experiments will crucially depend on the temperature of the initial antihydrogen sample. Measurements by ATRAP and ATHENA have shown that antihydrogen produced with the nested-trap technique is much hotter than the temperature of the surrounding trap. Therefore, novel schemes for antihydrogen recombination as well as for the pre-cooling of antiprotons are being considered. We are investigating a possible antiproton cooling technique based on the laser cooling of negative osmium ions. If demonstrated to be successful, it will allow the sympathetic cooling of antiprotons—or any negatively charged particles—to microkelvin temperatures. As a first milestone toward the laser cooling of negative ions, we have performed collinear laser spectroscopy on negative osmium and determined the transition frequency and the cross-section of the relevant bound–bound electric-dipole transition.  相似文献   

2.
The problem of possible controlling the antihydrogen formation and deexcitation has become an actual one for the investigation of efficient methodologies for the production of cold antihydrogen in the ground state. In 1983–1997 it was suggested and discussed by A. Wolf the possibility of laser-stimulated formation and stabilization of antihydrogen in collisions of antiprotons with positrons. In the present report we analyze the question with a wave-packet propagation method developed for the quantum two-body problem with a non-separable interaction. This computational technique can also be applied for analyzing the laser-assisted antihydrogen formation in magnetic traps.  相似文献   

3.
The development of a high density cryogenic pure positron plasma trap at the LLNL positron beam facility opens new possibilities for antihydrogen research. We discuss a planned measurement of the three-body collisional recombination rate in magnetized plasmas, a possible antihydrogen atomic beam experiment, and other applications of pure positron plasmas.  相似文献   

4.
The gravitational force on antimatter has never been directly measured. A method is suggested for making this measurement by directing a low-energy beam of neutral antihydrogen atoms through a transmission-grating interferometer and measuring the gravitationally-induced phase shift in the interference pattern. A 1% measurement of the acceleration due to the Earth's gravitational field (¯ g) should be possible from a beam of about 105 or 106 atoms. If more antihydrogen can be made, a much more precise measurement of¯ g would be possible. A method is suggested for producing an antihydrogen beam appropriate for this experiment.  相似文献   

5.
The motivation for production and precision spectroscopy of antihydrogen atoms is outlined. An experimental configuration is considered, concerning laser-microwave spectroscopy of a fast hydroten beam with characteristics similar to those of an antihydrogen beam emanating from an antiproton-positron overlap region in an antiproton storage ring. In particular, a possible experiment for the measurement of the ground state hyperfine structure splitting is described.  相似文献   

6.
Detailed comparisons of antihydrogen with hydrogen promise to be a fruitful test bed of fundamental symmetries such as the CPT theorem for quantum field theory or studies of gravitational influence on antimatter. With a string of recent successes, starting with the first trapped antihydrogen and recently resulting in the first measurement of a quantum transition in anti-hydrogen, the ALPHA collaboration is well on its way to perform such precision comparisons. We will discuss the key innovative steps that have made these results possible and in particular focus on the detailed work on positron and antiproton preparation to achieve antihydrogen cold enough to trap as well as the unique features of the ALPHA apparatus that has allowed the first quantum transitions in anti-hydrogen to be measured with only a single trapped antihydrogen atom per experiment. We will also look at how ALPHA plans to step from here towards more precise comparisons of matter and antimatter.  相似文献   

7.
The ASACUSA collaboration has been making a path to realize high precision microwave spectroscopy of ground-state hyperfine transitions of antihydrogen atom in flight for stringent test of the CPT symmetry. For this purpose, an efficient extraction of a spin polarized antihydrogen beam is essential. In 2010, we have succeeded in synthesizing our first cold antihydrogen atoms employing a CUSP trap. The CUSP trap confines antiprotons and positrons simultaneously with its axially symmetric magnetic field to form antihydrogen atoms. It is expected that antihydrogen atoms in the low-field-seeking states are preferentially focused along the cusp magnetic field axis whereas those in the high-field-seeking states are defocused, resulting in the formation of a spin-polarized antihydrogen beam.  相似文献   

8.
Cold antihydrogen is produced when antiprotons are repeatedly driven into collisions with cold positrons within a nested Penning trap. Efficient antihydrogen production takes place during many cycles of positron cooling of antiprotons. A first measurement of a distribution of antihydrogen states is made using a preionizing electric field between separated production and detection regions. Surviving antihydrogen is stripped in an ionization well that captures and stores the freed antiproton for background-free detection.  相似文献   

9.
Possibilities for trapping and cooling antihydrogen atoms for spectroscopy and gravitational measurements are discussed. A measurement of the gravitational force on antihydrogen seems feasible if antihydrogen can be cooled to of order 1 milli-Kelvin. Difficulties in obtaining this low energy are discussed in the hope of stimulating required experimental and theoretical studies.  相似文献   

10.
Journal of Experimental and Theoretical Physics - A physical model is proposed, which makes it possible to determine the velocity distributions of antihydrogen atoms formed as a result of...  相似文献   

11.
The possible formation of antihydrogen atoms via the collision of metastable antiprotonic helium atoms with positrons and positroniums is discussed based on the known behavior of positrons in helium media.  相似文献   

12.
The AEGIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) experiment is an international collaboration, based at CERN, with the experimental goal of performing the first direct measurement of the Earth’s gravitational acceleration on antihydrogen. In the first phase of the experiment, a gravity measurement with 1% precision will be performed by passing a beam of ultra cold antihydrogen atoms through a classical Moiré deflectometer coupled to a position sensitive detector. The key requirements for this measurement are the production of ultra cold (T~100?mK) Rydberg state antihydrogen and the subsequent Stark acceleration of these atoms. The aim is to produce Rydberg state antihydrogen by means of the charge exchange reaction between ultra cold antiprotons (T~100?mK) and Rydberg state positronium. This paper will present details of the developments necessary for the successful production of the ultra cold antihydrogen beam, with emphasis on the detector that is required for the development of these techniques. Issues covered will include the detection of antihydrogen production and temperature, as well as detection of the effects of Stark acceleration.  相似文献   

13.
The possibility to produce, trap and study antihydrogen atoms rests upon the recent availability of extremely cold antiprotons in a Penning trap. Over the last five years, our TRAP Collaboration has slowed, cooled and stored antiprotons at energies 1010 lower than was previously possible. The storage time exceeds 3.4 months despite the extremely low energy, which corresponds to 4.2 K in temperature units. The first example of measurements which become possible with extremely cold antiprotons is a comparison of the antiproton inertial masses which shows they are the same to a fractional accuracy of 4×10−8. (This is 1000 times more accurate than previous comparisons and large additional increases in accuracy are anticipated.) To increase the number of trapped antiprotons available for antihydrogen production, we have demonstrated that we can accumulate or “stack” antiprotons cooled from successive pulsed injections into our trap.  相似文献   

14.
Production of antihydrogen atoms by mixing antiprotons with a cold, confined, positron plasma depends critically on parameters such as the plasma density and temperature. We discuss nondestructive measurements, based on a novel, real-time analysis of excited, low-order plasma modes, that provide comprehensive characterization of the positron plasma in the ATHENA antihydrogen apparatus. The plasma length, radius, density, and total particle number are obtained. Measurement and control of plasma temperature variations, and the application to antihydrogen production experiments are discussed.  相似文献   

15.
Cold antihydrogen atoms have been produced recently by mixing trapped antiprotons with cold positrons. The efficiency is remarkable: more than 10% of the antiprotons form antihydrogen. Future spectroscopy of antihydrogen has the potential to provide new extremely precise tests of the fundamental symmetry between matter and antimatter. In addition, cold antihydrogen atoms might permit the first direct experiments investigating antimatter gravity. A novel method to measure the gravitational acceleration of antimatter using ultra-cold antihydrogen atoms is proposed. PACS 04.80.Cc; 32.80.Pj; 36.10.-k  相似文献   

16.
Magnetic traps offer the possibility for long-term storage and accumulation of atomic antihydrogen. These are invaluable features for revealing subtle differences that may exist between hydrogen and antihydrogen in interaction with electromagnetic or gravity fields. An overview is given of various aspects associated with trapping and cooling of neutral particles, putting emphasis on their relevance for the antihydrogen problem.  相似文献   

17.
The production of antihydrogen by merging beams of antiprotons and positrons is described. Both beams, kept in storage devices, are continuously recirculated. Antihydrogen is formed by radiative recombination of positrons and antiprotons. Production rates of a few thousand per second are expected. The semi-relativistic atomic beam of antihydrogen would have a divergence of less than 1 mrad and a beam diameter of a few millimeter. The possibilities to increase these rates by induced recomtination are discussed. The scheme of antihydrogen production in overlapping beams is compared to other approaches.  相似文献   

18.
Antihydrogen is formed when antiprotons are mixed with cold positrons in a nested Penning trap. We present experimental evidence, obtained using our antihydrogen annihilation detector, that the spatial distribution of the emerging antihydrogen atoms is independent of the positron temperature and axially enhanced. This indicates that antihydrogen is formed before the antiprotons are in thermal equilibrium with the positron plasma. This result has important implications for the trapping and spectroscopy of antihydrogen.  相似文献   

19.
The interaction between Ps and a strong laser pulse of short duration is studied. Substantial population is deposited in excited states under few photon excitation. The possible usefulness as a source of excited Ps to spectroscopy and the formation of antihydrogen is discussed. Finally, photoelectron energy spectra are calculated. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
A background-free observation of cold antihydrogen atoms is made using field ionization followed by antiproton storage, a detection method that provides the first experimental information about antihydrogen atomic states. More antihydrogen atoms can be field ionized in an hour than all the antimatter atoms that have been previously reported, and the production rate per incident high energy antiproton is higher than ever observed. The high rate and the high Rydberg states suggest that the antihydrogen is formed via three-body recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号