首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of a THF solution of trans-[ReCl(N2)(dppe)2] (dppe = Ph2PCH2CH2PPh2) with NO, in the presence of Tl[BF4], forms trans-[Re(NO)2(dppe)2][BF4], a rare formal 20-electron d8-rhenium nitrosyl complex which, by reaction with HX (X = BF4, Cl or HSO4), gives trans-[ReF(NO)(dppe)2][BF4] (2) (the X-ray structure of which is reported) or trans-[ReX(NO)(dppe)2]X (3, X = Cl or HSO4), respectively, as well as nitrous oxide.  相似文献   

2.
Interaction of dichlorosilylene with dinitrogen in mixed Ar—N2 matrices at 9 - 10 K was studied by IR spectroscopy. A donor-acceptor complex Cl2Si·N2 was found and characterized by six bands of symmetric (at 511.2, 508.9, and 506.5 cm–1) and antisymmetric (at 500.1, 496.9, and 495.1 cm–1) stretching vibrations of Si—Cl bonds in the most abundant isotopomers. Two bands at 498.7 and 493.5 cm–1 observed in mixed matrices were tentatively assigned to Cl2Si·(N2)2 complex. Several stretching vibration bands of minor isotopomers of SiCl2 were detected for the first time in argon matrices. Assignment has been done for the isotopic structure of SiCl2 associates with dinitrogen observed in N2 matrices. Dimerization of SiCl2 and its complexation with one and two N2 molecules were studied by quantum-chemical DFT calculations (PBE and B3LYP functionals). The structures, energies, and vibrational frequencies of the Cl2Si·N2 and Cl2Si·(N2)2 complexes and the Si2Cl4 dimer were determined. The energies of SiCl2 complexation with one and two N2 molecules obtained from PBE and B3LYP calculations are 0.3 and 0.6 kcal mol–1, respectively. More accurate G2(MP2,SVP) calculations using the B3LYP geometries have predicted a higher stability of the Cl2Si·N2 complex (1.2 kcal mol–1). The calculated and experimental vibrational frequencies of reagents and complexes are in good agreement. A correlation has been established between the PBE calculated energies of complexation of EHal2 (E = Si, Ge, Sn, Pb) with N2 and the experimentally observed shifts of E—Hal stretching vibrations in EHal2 upon complexation. The strength of the complexes with N2 increases on going from dihalosilylenes to dihaloplumbylenes.  相似文献   

3.
Summary Compounds of the type CuL2X2, where L =N(2-aminoethyl)piperazine [N(2-amet)pipz],N(2-aminoethyl)-pyrrolidine [N(2-amet)pyrr] andN(2-aminoethyl)morpholine [N(2-amet)morph] and X = BF 4 , ClO 4 and NO 3 , have been prepared and characterized by means of magnetic moments, e.s.r., electronic and i.r. spectra. Only forN(2-amet)pyrr and Cu[N(2-amet)morph]2(NO3)2 complexes, do the electronic and i.r. spectra suggest polyanion coordination. In particular, as their electronic and i.r. spectra in the 293–393K range are temperature-dependent, it may be ascribed to the presence of a reversible continuous thermochromism arising from a temperature-dependent axial interaction between the anion and the CuN4 plane, which diminishes as the temperature increases. In all the other complexes, the thermochromism may be associated with a geometry which is more planar forN(2-amet)morph than forN(2-amet)pipz derivatives.  相似文献   

4.
Syntheses and Structures of [ReNBr2(Me2PhP)3] and (Me2PhPH)[ fac ‐Re(NBBr3)Br3(Me2PhP)2] [ReNBr2(Me2PhP)3] ( 1 ) has been prepared by the reaction of [ReNCl2(Me2PhP)3] with Me3SiBr in dichloromethane. The bromo complex reacts with BBr3 under formation of [Re(NBBr3)Br2(Me2PhP)3] ( 2 ) or (Me2PhPH)[fac‐Re(NBBr3)Br3(Me2PhP)2] ( 3 ) depending on the experimental conditions. The formation of the nitrido bridge leads to a significant decrease of the structural trans influence of the nitrido ligand which is evident by the shortening of the Re‐(trans)Br bond from 2.795(1) Å in [ReNBr2(Me2PhP)3] to 2.620(1) Å in [fac‐Re(NBBr3)Br3(Me2PhP)2] and 2.598(1) Å in [Re(NBBr3)Br2(Me2PhP)3], respectively.  相似文献   

5.
The crystal structures of the monomeric palladium(II) azide complexes of the type L2Pd(N3)2 (L = PPh3 ( 1 ), AsPh3 ( 2 ), and 2‐chloropyridine ( 3 )), the dimeric [(AsPh4)2][Pd2(N3)4Cl2] ( 4 ), the homoleptic azido palladate [(PNP)2][Pd(N3)4] ( 5 ) and the homoleptic azido platinates [(AsPh4)2][Pt(N3)4] · 2 H2O ( 6 ) and [(AsPh4)2][Pt(N3)6] ( 7 ) were determined by X‐ray diffraction at single crystals. 1 and 2 are isotypic and crystallize in the triclinic space group P1. 1 , 2 and 3 show terminal azide ligands in trans position. In 4 the [Pd2(N3)4Cl2]2– anions show end‐on bridging azide groups as well as terminal chlorine atoms and azide ligands. The anions in 5 and 6 show azide ligands in equal positions with almost local C4h symmetry at the platinum and palladium atom respectively. The metal atoms show a planar surrounding. The [Pt(N3)6]2– anions in 7 are centrosymmetric (idealized S6 symmetry) with an octahedral surrounding of six nitrogen atoms at the platinum centers.  相似文献   

6.
Summary Treatment of complexestrans-[M(CNBu-t)2(dppe)2][(1) M = Mo or W, dppe = Ph2PCH2CH2PPh2] with protic acid gives a mixture of the aminocarbyne complexestrans- pluscis-[M(CNHBu-t)(CNBu-t)(dppe)2]+ (2) and the hydridocompounds [MH(CNBu-t)2(dppe)2]+ (3), whereas reaction with an alkylating agent (R+) appears to give the dialkylaminocarbyne compounds [M(CNRBu-t)(CNBu-t)(dppe)2]+ (4) also as a mixture of thetrans andcis isomers.  相似文献   

7.
Abstract

Reactions of HBr with trans-[W(N2)2(dppe)PPh2Me)2] (1) (dppe = Ph2CH2CH2PPh2) result in protonation of coordinated N2 but no formation of ammonia or hydrazine. The tungsten-containing product depends upon the reaction conditions: (i) in MeOH, the product formed is [WBr(NNH2) (dppe)(PPh2Me)2]HBr2 (2) which converts to the hydride, [WBr2(H)(NNH2(dppe)(PPh2Me)](Br(3), with loss of phosphine in THF or CH2Cl2, (ii) in THF or CH2Cl2, the hydride (3) is formed directly. Reaction of 2 with Na2CO3 in MeOH results in the loss of HBr and the formation of the diazenido complex [WBr(NNH)(dppe)(PPh2Me)2] which reacts further with Na2CO3 in benzene under N2 to lose HBr and form a mixture of 1 and trans-[W(N2)(dppe)2]. The reaction of 1 with aqueous HF forms [WF(NNH2)(dppe)(PPh2Me)2]BF4. The X-ray photoelectron spectra of trans-[M(N2)2 (dppe)2], [MBr(NNH2)(dppe)2Br (M = Mo, W), [WCl(NNH2)(dppe)2]Cl, [WCl(N)(dppe)2]Cl and [WCl(NH) (dppe)2] are reported. In all of these complexes, nitrogen is in a highly reduced form.  相似文献   

8.
The 15N‐labelled iron dinitrogen complexes trans‐[FeH(N2)(PP)2]+[BPh4]? (PP = dppe, depe, dmpe) and cis‐[FeH(N2)(PP3)]+[BPh4]? were prepared in situ by exchange of unlabelled coordinated dinitrogen with 15N2. 15N NMR chemical shifts and coupling constants are reported. The 15N spectra exhibit separate signals for the metal‐bound and terminal nitrogen atoms of the coordinated N2. The 15N resonances display 15N, 15N coupling as well as 31P, 15N coupling and long‐range 15N, 1H coupling when there is a metal‐bound hydrido ligand. Exchange between free and coordinated dinitrogen was monitored by magnetization transfer between 15N‐labelled sites using an inversion–transfer–recovery experiment. Exchange between the metal‐bound and terminal nitrogen atoms of coordinated N2 was also monitored by magnetization transfer and this could proceed by N2 dissociation or by an intramolecular process. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
Summary Reactions oftrans-[M(N2)2(dppe)2] (A;M=Mo, W;dppe=Ph 2PCH2CH2PPh 2) with ethyldiazoacetate, N2CHCOOEt, yield the bisdiazoalkane speciestrans-[M(N2CHCOOEt)2(dppe)2], upon simple replacement of the dinitrogen ligand by ethyldiazoacetate. However, diazomethane, N2CH2, reacts withA with loss of N2 to give products which we tentatively formulate as containing methylene ligands,trans-[M(CH2)2(dppe)2].
Herstellung von Bisdiazoalkan- und ähnlichen Komplexen aus den Reaktionen von Diazoverbindungen mit Distickstoffkomplexen des Typstrans-[M(N2)2(Ph 2PCH2CH2PPh 2)2] mitM=Mo oder W
Zusammenfassung Die Reaktion vontrans-[M(N2)2(dppe)2] (A:dppe=Ph 2PCH2CH2PPh 2 undM=Mo oder W) mit Ethyldiazoacetat, N2CHCOOEt, ergab nach einfachem Austausch des Distickstoffliganden mit Ethyldiazoacetat die Bisdiazoalkanetrans-[M(N2CHCOOEt)2(dppe)2]. Diazomethan (N2CH2) hingegen reagierte mitA unter Verlust von N2 zu Produkten, die tentativ alstrans-[M(CH2)2(dppe)2] mit Methylenliganden formuliert wurden.
  相似文献   

10.
The imine functions of [Ni(mL1)](ClO4)2 (mL1 = meso-7RS,14SR-5,12-dimethyl-7,14-diphenyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene) are reduced by using NaBH4 in acetonitrile/methanol to form the meso–meso and rac–meso isomeric cyclic tetramine complex cations [Ni(mmL2)]2+ and [Ni(rmL2)]2+ (mml2 = 5RS,7RS,12SR,14SR- and rmL2 = 5SR,7RS,12SR,14SR-5,12-dimethyl-7,14-diphenyl-1,4,8,11-tetraazacyclotetradecane) in ca. 8:1 proportions. [Ni(rmL2)]2+ is also prepared from rmL2, formed in <1% yield by the reduction of mL1 by NaBH4 in ethanol. Square planar singlet ground state (S = 1) salts [Ni(rmL2)](ClO4)2 and [Ni(rmL2)][ZnCl4] and triplet ground state (S = 3) trans-di-ligand octahedral compounds trans-[Ni(rmL2)X2] ,μ-Y-trans-[Ni(rmL2)Y] and folded macrocycle compounds cis-[Ni(rmL2)(acac)]CIO4 (acac = pentane-2,4-dionato), cis-[{Ni(rmL2)}2(C2O4)](ClO4)2, cis-[Ni(rmL2)(H2O)2](ClO4)2 and cis-[Ni(rmL2)X2], X = Cl, Br, are described. The S = 1 salt 1SR,4SR,5SR,7RS,8RS,11RS,12SR,14SR-[Ni(rmL2)](ClO4)2 · 0.5H2O has a disordered structure with Ni(II) in square planar coordination by the nitrogen atoms of the macrocycle, in N-configuration III, with Ni–Nmean = 1.96(2) Å. The six-membered chelate rings both have chair conformations, with the phenyl substituents equatorially oriented and with the methyl substituents disordered over axial and equatorial orientations. The S = 3 compound cis-1SR,4SR,5SR,7RS,8SR,11SR,12SR,14SR-[Ni(rmL2)(acac)]ClO4 has N-configuration V. The macrocycle is folded along N1–Ni–N8, adjacent to the phenyl substituents {N1–Ni–N8 = 176.45(6), N4–Ni–N11 = 98.16(6)°}, with mean Ni–N = 2.09(2) Å and mean Ni–O = 2.121(5) Å. Both six-membered chelate rings have chair conformations with the methyl substituents equatorially oriented, while one has the phenyl substituent equatorially and the other has it axially oriented. The structures of the isomeric [M(rmL2)(acac)]ClO4, [M(rrL2)(acac)]CIO4 and [M(mmL2)(acac)]ClO4 compounds are compared.  相似文献   

11.
Iron nitrosyl complexes with general formula [Q4N]2[Fe2(S2O3)2(NO)4] (Q = Me, Et, n-Pr, n-Bu) were synthesized by the exchange reaction of K2[Fe2(S2O3)2(NO)4] with tetraalkylammonium bromides. The molecular and crystal structure of [(CH3)4N]2[Fe2(S2O3)2(NO)4] were studied by X-ray diffraction analysis. The iron atom in the four-membered cycle of the [2Fe–2S] anion is bound to another Fe atom and to two sulfur atoms and is coordinated by two nonequivalent NO groups, each bridging sulfur atom being bound to the SO3group. The structurally equivalent iron atoms are in the state Fe1–(S= 1/2). The Mössbauer spectroscopy method shows that the complexes are diamagnetic due to the strong Fe–Fe bond. It is found that the SO3group provides higher stability of the thiosulfate anion than the anion in Roussin's red salt [Fe2S2(NO)4]2–.  相似文献   

12.
The vibrational properties of the two octahedral FeII dinitrogen complexes [FeH(N2)(depe)2]+ ( 1 ) and [FeCl(N2)(depe)2]+ ( 2 , depe = 1, 2‐bis(diethylphosphino)ethane) are investigated with the help of infrared and Raman spectroscopies. Vibrational data are evaluated with a Quantum Chemistry Assisted Normal Coordinate Analysis (QCA‐NCA; N. Lehnert, F. Tuczek, Inorg. Chem. 1999 , 38, 1659). In agreement with high values found for ν(NN) and the corresponding force constants f(NN), the N2 ligands in compounds 1 and 2 are non‐activated which corresponds to the observation that N2 is not protonable in FeII systems. Taking into account the short Fe‐N bond lengths, the values of the Fe‐N stretching force constants (2.55mdyn/Å for 1 and 2.58mdyn/Å for 2 ) are found to be compatible with those of other FeII low‐spin compounds coordinated to backbonding N‐coordinating ligands. The force fields obtained for the Fe‐N2 units of 1 and 2 are almost identical although the thermal stability of 1 and 2 with respect to loss of N2 is different. This indicates that the zero‐point vibrational levels are unaffected by possible ground‐state level crossing processes occuring at larger Fe‐N bond lengths, as observed for 2 (O. Franke, B. E. Wiesler, N. Lehnert, C. Näther, V. Ksenofontov, J. Neuhausen, F. Tuczek, Inorg. Chem. 2002 , 41, 3491).  相似文献   

13.
Boron tribromide and aryldihaloboranes were found to undergo 1,3-haloboration across one W−N≡N moiety of a group 6 end-on dinitrogen complex (i.e. trans-[W(N2)2(dppe)2]). The N-borylated products consist of a reduced diazenido unit sandwiched between a WII center and a trivalent boron substituent (W−N=N−BXAr), and have all been fully characterized by NMR and IR spectroscopy, elemental analysis, and single-crystal X-ray diffraction. Both the terminal N atom and boron center in the W−N=N−BXAr unit can be further derivatized using electrophiles and nucleophiles/Lewis bases, respectively. This mild reduction and functionalization of a weakly activated N2 ligand with boron halides is unprecedented, and hints at the possibility of generating value-added nitrogen compounds directly from molecular dinitrogen.  相似文献   

14.
Mixed-Ligand Complexes of Rhenium IV. The Reaction of [ReNCl2(Me2PhP)3] with Dithiocarbamates. X-Ray Crystal Structures of trans-Chloro-dimethyldithiocarbamato-bis(dimethylphenylphosphine) nitridorhenium(V), [ReN(Cl)(Me2PhP)2(Me2dtc)], and Bis(diethyldithiocarbamato)(dimethylphenylphosphine)nitridorhenium(V), [ReN(Cl)(Me2PhP)(Et2dtc)2] [ReNCl2(Me2PhP)3] reacts with dialkyldithiocarbamates, R2dtc?, under a stepwise ligand exchange. Final products of these reactions are the well-known [ReN(R2dtc)2] bischelates. Intermediatelly, however, complexes of the general formulae [ReN(Cl)(Me2PhP)2(R2dtc)] and [ReN(Me2PhP)(R2dtc)2] can be isolated. Representatives have been structurally characterized. [ReN(Cl)(Me2PhP)2(Me2dtc)] crystallizes monoclinic in the space group P21/c, Z = 4. The dimensions of the unit cell are a = 13.071(3); b = 11.622(1); c = 15.667(3) Å; β = 97.09(1)°. The rhenium atom has a distorted octahedral environment; the Re≡N bond length is 1.71(1) Å. The Re? Cl bond distance is markedly lengthened (2.665(2) Å) as a consequence of the strong trans labilizing influence of the coordinated nitrido ligand. [ReN(Me2PhP)(Et2dtc)2] crystallizes monoclinic in the space group P21/c, Z = 4, a = 17.262(3); b = 14.915(2); c = 9.888(2); β = 76.35(8)°. The equatorial coordination sphere is occupied by one phosphorus atom and three sulphur atoms. One of the dithiocarbamate ligands is coordinated bidentately; the second one with two distinct Re? S bond lengths. The Re? S(4) distance is 2.7983(2) Å which can be discussed as a weak interaction with the metal.  相似文献   

15.
Crystals of 4(C2H5)4N+F · 11H2O are orthorhombic, space groupPna21, witha=16.130(3),b=16.949(7),c=17.493(7) Å, andZ=4. The structure was shown to be a clathrate hydrate containing infinite chains of edge-sharing (H2O)4F tetrahedra extending parallel to thea axis. The chains are laterally linked by bridging water molecules to form a three-dimensional hydrogen-bonded anion/water framework. The ordered (C2H5)4N+ cations occupy the voids in two open channel systems running in theb andc directions. FinalR F =0.091 for 2278 observed MoK data measured at 22°C. Supplementary Data: relating to this article are deposited with the British Library as Supplementary Publication No. SUP 82010 (20 pages).Dedicated to Professor H. M. Powell.  相似文献   

16.
Summary [RuCl(NO)2(dppbp)]BF4 (dppbp=(Ph2PCH2)2–) has been synthesised from [RuCl(NO)2(PPh3)2]BF4 and dppbp and characterised in the solid state by a single crystal x-ray determination. The [RuCl(NO)2(dppbp)]+ cation, has an approximately square-pyramidal co-ordination geometry with the dppbp ligand occupyingtrans-basal sites. The nitrosyl ligand in the apical site is partially bent [Ru–N–O=156.2(7)0] and the nitrosyl ligand in the basal side is essentially linear [Ru–N–O=172.5(6)0]. The1Hn.m.r. spectrum of [RuCl(NO)2(dppbp)]BF4 in solution has provided some insight into the dynamics of the complex in solution.  相似文献   

17.
NO and O 2 molecules are the source of the oxygen atom for dicationic µ-oxo(diaryltellurium) dimers 2 (X=BF4, CF3SO3), which form upon chemical oxidation of 1 with NOBF4 (method A) or (CF3SO2)2O/O2 [method B, Eq. (a)]. The fate of the nitrogen atom of the oxidizing agent NOBF4 remains uncertain at this stage.  相似文献   

18.
The reactions of [Mo(N22(dppe)2], (dppe  Ph2PCH2CH2PPh2) with RC6H4NCO (R  H, p-CH3, p-Cl) in benzene under irradiation produces [Mo(RC6H4NCO)2(dppe)2] in good yields. Comparison of the infrared data for these complexes, with those previously reported for metal complexes of CO2-like molecules suggest a η2-C,O coordination to the metal.  相似文献   

19.
The reaction of trans ‐[M(N2)2(dppe)2] (M=Mo, 1Mo , M=W, 1W ) with B(C6F5)3 ( 2 ) provides the adducts [(dppe)2M=N=N‐B(C6F5)3] ( 3 ) which can be regarded as M/B transition‐metal frustrated Lewis pair (TMFLP) templates activating dinitrogen. Easy borylation and silylation of the activated dinitrogen ligands in complexes 3 with a hydroborane and hydrosilane occur by splitting of the B−H and Si−H bonds between the N2 moiety and the perfluoroaryl borane. This reactivity of 3 is reminiscent of conventional frustrated Lewis pair chemistry and constitutes an unprecedented approach for the functionalization of dinitrogen.  相似文献   

20.
The release of NO by [Fe(NO)(Et2NpyS4)], where (Et2NpyS4)2? = 2,6-bis(2-mercaptophenylthiomethyl)-4-substituted pyridine(2-), has been studied in the absence and presence of a trapping agent. The results show that [Fe(NO)(Et2NpyS4)] releases NO spontaneously in solution with a slow rate, k-NO = 1.7 × 10?4 s?1 at 23 °C, in a reversible reaction. NO release becomes faster when the reaction intermediate [Fe(Et2 NpyS4)] was trapped by CO, thereby preventing the back reaction. The release of NO was studied as a function of CO concentration and temperature. The reported activation parameters, especially the positive activation entropy values for the release of NO, favor the operation of a dissociative interchange (Id) mechanism. Thus, [Fe(NO)(Et2NpyS4)] can serve as a NO deliverer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号