首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 327 毫秒
1.
An analytical solution is presented for the calculation of the flow field in a concentric cylinder viscometer of non-ideal Bingham-fluids, described by the Worrall-Tuliani rheological model. The obtained shear rate distribution is a function of the a priori unknown rheological parameters. It is shown that by applying an iterative procedure experimental data can be processed in order to obtain the proper shear rate correction and the four rheological parameters of the Worrall-Tuliani model as well as the yield surface radius. A comparison with Krieger's correction method is made. Rheometrical data for dense cohesive sediment suspensions have been reviewed in the light of this new method. For these suspensions velocity profiles over the gap are computed and the shear layer thicknesses were found to be comparable to visual observations. It can be concluded that at low rotation speeds the actually sheared layer is too narrow to fullfill the gap width requirement for granular suspensions and slip appears to be unavoidable, even when the material is sheared within itself. The only way to obtain meaningfull measurements in a concentric cylinder viscometer at low shear rates seems to be by increasing the radii of the viscometer. Some dimensioning criteria are presented.Notation A, B Integration constants - C Dimensionless rotation speed = µ/y - c = 2µ - d = 0 2–2cy - f() = (–0)2+2c(–y) - r Radius - r b Bob radius - r c Cup radius - r y Yield radius - r 0 Stationary surface radius - r Rotating Stationary radius - Y 0 Shear rate parameter = /µ Greek letters Shear rate - = (r y /r b )2– 1 - µ Bingham viscosity - µ0 Initial differential viscosity - µ µ0 - Rotation speed - Angular velocity - Shear stress - b Bob shear stress - B Bingham stress - y (True) yield stress - 0 Stress parameter = B Y 0 - B - y   相似文献   

2.
A numerical study of convective heat flow within a fibrous insulating slab is presented. The material is treated as an anisotropic porous medium and the variation of properties with temperature is taken into account. Good agreement is obtained with available experimental data for the same geometry.
Zusammenfassung Für den konvektiven Wärmestrom in einem faserförmigen Isolierstoff wird eine numerische Berechnung angegeben. Der Stoff wird als anisotropes poröses Medium mit temperaturabhängigen Stoffwerten angesehen. Die Übereinstimmung mit verfügbaren Versuchswerten ist gut.

Nomenclature Cp specific heat of the gas at the mean temperature - Da Darcy number=ky/H2 - Gr* modified Grashof number=gTHky/2= (Grashof number) × (Darcy number) - H thickness of the specimen - P gas pressure - Pr* modified Prandtl number= Cp/x - Ra* modified Rayleigh number=Gr* Pr* - Rp ratio of permeabilities=ky/kx - Rk ratio of conductivities= y/x - T absolute temperature of the gas - t1 absolute temperature of the hot face - T2 absolute temperature of the cold face - Tm mean temperature of the gas=(T1+T2)/2 - kx specific permeability of the porous medium along the x-direction - ky specific permeability of the porous medium along the y-direction - p T/Tm - q exponent - r exponent - u gas velocity along the x-direction - v gas velocity along the y-direction - X* distance along the x-direction - y* distance along the y-direction - T temperature difference=t1–T2 - thermal coefficient of expansion of the gas - m thermal coefficient of expansion of the gas at the mean temperature - * T–Tm - dimensionless temperature= */T - a apparent thermal conductivity of the porous medium along the x-direction - al local apparent thermal conductivity of the porous medium along the x-direction - x thermal conductivity of the porous medium along the x-direction in the absence of convection - y thermal conductivity of the porous medium along the y-direction in the absence of convection - dynamic viscosity of the gas - m dynamic viscosity of the gas at the mean temperature - kinematic viscosity of the gas - m kinematic viscosity of the gas at the mean temperature - density of the gas - m density of the gas at the mean temperature - * stream function at any point - dimensionless stream function= */( m/m)  相似文献   

3.
Summary A study is made of the attenuation of pressure surges in a two-dimension a channel carrying a viscous liquid when a valve at the downstream end is suddenly closed. The analysis differs from previous work in this area by taking into account the transient nature of the wall shear, which in the past has been assumed as equivalent to that existing in steady flow. For large values of the frictional resistance parameter the transient wall shear analysis results in less attenuation than given by the steady wall shear assumption.Nomenclature c /, ft/sec - e base of natural logarithms - F(x, y) integration function, equation (38) - (x) mean value of F(x, y) - g local acceleration of gravity, ft/sec2 - h width of conduit, ft - k (2m–1)2 2 L/h 2 c, equation (35) - k* 12L/h 2 c, frictional resistance parameter, equation (46) - L length of conduit, ft - m positive integer - n positive integer - p pressure, lb/ft2 - p 0 constant pressure at inlet of conduit, lb/ft2 - P pressure plus elevation head, p+gz, equation (4) - mean value of P over the conduit width h - P 0 p 0+gz 0, lbs/ft2 - R frictional resistance coefficient for steady state wall shear, lb sec/ft4 - s positive integer; also, condensation, equation (6) - t time, sec - t ct/L, dimensionless time - u x component of fluid velocity, ft/sec - u m mean velocity in conduit, equation (12), ft/sec - u 0(y) velocity profile in Poiseuille flow, equation (19), ft/sec - transformed velocity - U initial mean velocity in conduit - x distance along conduit, measured from valve (fig. 1), ft - x x/L, dimensionless distance - y distance normal to conduit wall (fig. 1), ft - y y/h, equation (25) - z elevation, measured from arbitrary datum, ft - z 0 elevation of constant pressure source, ft - isothermal bulk compression modulus, lbs/ft2 - n , equation (37) - n (2n–1)/2, equation (36) - viscosity, slugs/ft sec - / = kinematic viscosity, ft2/sec - density of fluid, slugs/ft3 - 0 density of undisturbed fluid, slugs/ft3 - ø angle between conduit and vertical (fig. 1) The research upon which this paper is based was supported by a grant from the National Science Foundation.  相似文献   

4.
Summary The problem of heat transfer in a two-dimensional porous channel has been discussed by Terrill [6] for small suction at the walls. In [6] the heat transfer problem of a discontinuous change in wall temperature was solved. In the present paper the solution of Terrill for small suction at the walls is revised and the whole problem is extended to the cases of large suction and large injection at the walls. It is found that, for all values of the Reynolds number R, the limiting Nusselt number Nu increases with increasing R.Nomenclature stream function - 2h channel width - x, y distances measured parallel and perpendicular to the channel walls respectively - U velocity of fluid at x=0 - V constant velocity of fluid at the wall - =y/h nondimensional distance perpendicular to the channel walls - f() function defined in equation (1) - coefficient of kinematic viscosity - R=Vh/ suction Reynolds number - density of fluid - C p specific heat at constant pressure - K thermal conductivity - T temperature - x=x 0 position where temperature of walls changes - T 0, T 1 temperature of walls for x<x 0, x>x 0 respectively - = (TT 1)/T 0T 1) nondimensional temperature - =x/h nondimensional distance along channel - R * = Uh/v channel Reynolds number - Pr = C p/K Prandtl number - n eigenvalues - B n() eigenfunctions - B n (0) , () eigenfunctions for R=0 - B 0 (i) , B 0 (ii) ... change in eigenfunctions when R0 and small - K n constants given by equation (13) - h heat transfer coefficient - Nu Nusselt number - m mean temperature - C n constants given by equation (18) - perturbation parameter - B 0i () perturbation approximations to B 0() - Q = B 0/ 0 derivative of eigenfunction with respect to eigenvalue - z nondimensional distance perpendicular to the channel walls - F(z) function defined by (54)  相似文献   

5.
In this paper we continue previous studies of the closure problem for two-phase flow in homogeneous porous media, and we show how the closure problem can be transformed to a pair of Stokes-like boundary-value problems in terms of pressures that have units of length and velocities that have units of length squared. These are essentially geometrical boundary value problems that are used to calculate the four permeability tensors that appear in the volume averaged Stokes' equations. To determine the geometry associated with the closure problem, one needs to solve the physical problem; however, the closure problem can be solved using the same algorithm used to solve the physical problem, thus the entire procedure can be accomplished with a single numerical code.Nomenclature a a vector that maps V onto , m-1. - A a tensor that maps V onto . - A area of the - interface contained within the macroscopic region, m2. - A area of the -phase entrances and exits contained within the macroscopic region, m2. - A area of the - interface contained within the averaging volume, m2. - A area of the -phase entrances and exits contained within the averaging volume, m2. - Bo Bond number (= (=(–)g2/). - Ca capillary number (= v/). - g gravitational acceleration, m/s2. - H mean curvature, m-1. - I unit tensor. - permeability tensor for the -phase, m2. - viscous drag tensor that maps V onto V. - * dominant permeability tensor that maps onto v , m2. - * coupling permeability tensor that maps onto v , m2. - characteristic length scale for the -phase, m. - l characteristic length scale representing both and , m. - L characteristic length scale for volume averaged quantities, m. - n unit normal vector directed from the -phase toward the -phase. - n unit normal vector representing both n and n . - n unit normal vector representing both n and n . - P pressure in the -phase, N/m2. - p superficial average pressure in the -phase, N/m2. - p intrinsic average pressure in the -phase, N/m2. - p p , spatial deviation pressure for the -phase, N/m2. - r 0 radius of the averaging volume, m. - r position vector, m. - t time, s. - v fluid velocity in the -phase, m/s. - v superficial average velocity in the -phase, m/s. - v intrinsic average velocity in the -phase, m/s. - v v , spatial deviation velocity in the -phase, m/s. - V volume of the -phase contained within the averaging volmue, m3. - averaging volume, m3. Greek Symbols V /, volume fraction of the -phase. - viscosity of the -phase, Ns/m2. - density of the -phase, kg/m3. - surface tension, N/m. - (v +v T ), viscous stress tensor for the -phase, N/m2.  相似文献   

6.
T. Dabak  O. Yucel 《Rheologica Acta》1986,25(5):527-533
A method is proposed for determining the shear viscosity behavior of highly concentrated suspensions at low and high shear-rates through the use of a formulation that is a function of three parameters signifying the effects of particle size distribution. These parameters are the intrinsic viscosity [], a parametern that reflects the level of particle association at the initiation of motion and the maximum packing concentration m. The formulation reduces to the modified Eilers equation withn = 2 for high shear rates. An analytical method was used for the calculation of maximum packing concentration which was subsequently correlated with the experimental values to account for the surface induced interaction of particles with the fluid. The calculated values of viscosities at low and high shear-rates were found to be in good agreement with various experimental data reported in literature. A brief discussion is also offered on the reliability of the methods of measuring the maximum packing concentration. r = /0 relative viscosity of the suspension - volumetric concentration of solids - k n coefficient which characterizes a specific effect of particle interactions - m maximum packing concentration - r,0 relative viscosity at low shear-rates - [] intrinsic viscosity - n, n parameter that reflects the level of particle interactions at low and high shear-rates, respectively - r, relative viscosity at high shear-rates - (m)s, (m)i, (m)l packing factors for small, intermediate and large diameter classes - v s, vi, vl volume fractions of small, intermediate and large diameter classes, respectively - si, sl coefficient to be used in relating a smaller to an intermediate and larger particle group, respectively - is, il coefficient to be used in relating an intermediate to a smaller and larger particle group, respectively - ls, li coefficient to be used in relating a larger to a smaller and intermediate particle group, respectively - m0 maximum packing concentration for binary mixtures - m,e measured maximum packing concentration - m,c calculated maximum packing concentration  相似文献   

7.
Dynamic material functions of polymeric systems are calculated via a defect-diffusion model. The random motion of defects is modelled by a fractaltime stochastic process. It is shown that the dynamic functions of polymeric solutions can be approximated by the defect-diffusion process of the mixed type. The relaxation modulus of Kohlrausch type is obtained for a fractal-time defect-diffusion process, and it is shown that this modulus is capable of portraying the dynamic behavior of typical viscoelastic solutions.The Fourier transforms of the Kohlrausch function are calculated to obtain and. A three-parameter model for and is compared with the previous calculations. Experimental measurements for five polymer solutions are compared with model predictions. D rate of deformation tensor - G(t) mechanical relaxation modulus - H relaxation spectrum - I(t) flux of defects - P n (s) probability of finding a walker ats aftern-steps - P generating function ofP n (s) - s(t) fraction of surviving defects - , () gamma function (incomplete) - 0 zero shear viscosity - * () complex viscosity - frequency - t n n-th moment - F[] Fourier transform - f * (u) Laplace transform off(t) - , components of * - G f, f * fractional model - G 3, 3 * three parameter model - complex conjugate ofz - material time derivative ofD  相似文献   

8.
In this paper, we show that the maximum principle holds for quasilinear elliptic equations with quadratic growth under general structure conditions.Two typical particular cases of our results are the following. On one hand, we prove that the equation (1) {ie77-01} where {ie77-02} and {ie77-03} satisfies the maximum principle for solutions in H 1()L(), i.e., that two solutions u 1, u 2H1() L() of (1) such that u 1u2 on , satisfy u 1u2 in . This implies in particular the uniqueness of the solution of (1) in H 0 1 ()L().On the other hand, we prove that the equation (2) {ie77-04} where fH–1() and g(u)>0, g(0)=0, satisfies the maximum principle for solutions uH1() such that g(u)¦Du|{2L1(). Again this implies the uniqueness of the solution of (2) in the class uH 0 1 () with g(u)¦Du|{2L1().In both cases, the method of proof consists in making a certain change of function u=(v) in equation (1) or (2), and in proving that the transformed equation, which is of the form (3) {ie77-05}satisfies a certain structure condition, which using ((v1 -v 2)+)n for some n>0 as a test function, allows us to prove the maximum principle.  相似文献   

9.
The Stokes flow of two immiscible fluids through a rigid porous medium is analyzed using the method of volume averaging. The volume-averaged momentum equations, in terms of averaged quantities and spatial deviations, are identical in form to that obtained for single phase flow; however, the solution of the closure problem gives rise to additional terms not found in the traditional treatment of two-phase flow. Qualitative arguments suggest that the nontraditional terms may be important when / is of order one, and order of magnitude analysis indicates that they may be significant in terms of the motion of a fluid at very low volume fractions. The theory contains features that could give rise to hysteresis effects, but in the present form it is restricted to static contact line phenomena.Roman Letters (, = , , and ) A interfacial area of the- interface contained within the macroscopic system, m2 - A e area of entrances and exits for the -phase contained within the macroscopic system, m2 - A interfacial area of the- interface contained within the averaging volume, m2 - A * interfacial area of the- interface contained within a unit cell, m2 - A e * area of entrances and exits for the-phase contained within a unit cell, m2 - g gravity vector, m2/s - H mean curvature of the- interface, m–1 - H area average of the mean curvature, m–1 - HH , deviation of the mean curvature, m–1 - I unit tensor - K Darcy's law permeability tensor, m2 - K permeability tensor for the-phase, m2 - K viscous drag tensor for the-phase equation of motion - K viscous drag tensor for the-phase equation of motion - L characteristic length scale for volume averaged quantities, m - characteristic length scale for the-phase, m - n unit normal vector pointing from the-phase toward the-phase (n = –n ) - p c p P , capillary pressure, N/m2 - p pressure in the-phase, N/m2 - p intrinsic phase average pressure for the-phase, N/m2 - p p , spatial deviation of the pressure in the-phase, N/m2 - r 0 radius of the averaging volume, m - t time, s - v velocity vector for the-phase, m/s - v phase average velocity vector for the-phase, m/s - v intrinsic phase average velocity vector for the-phase, m/s - v v , spatial deviation of the velocity vector for the-phase, m/s - V averaging volume, m3 - V volume of the-phase contained within the averaging volume, m3 Greek Letters V /V, volume fraction of the-phase - mass density of the-phase, kg/m3 - viscosity of the-phase, Nt/m2 - surface tension of the- interface, N/m - viscous stress tensor for the-phase, N/m2 - / kinematic viscosity, m2/s  相似文献   

10.
Stokes flow through a rigid porous medium is analyzed in terms of the method of volume averaging. The traditional averaging procedure leads to an equation of motion and a continuity equation expressed in terms of the volume-averaged pressure and velocity. The equation of motion contains integrals involving spatial deviations of the pressure and velocity, the Brinkman correction, and other lower-order terms. The analysis clearly indicates why the Brinkman correction should not be used to accommodate ano slip condition at an interface between a porous medium and a bounding solid surface.The presence of spatial deviations of the pressure and velocity in the volume-averaged equations of motion gives rise to aclosure problem, and representations for the spatial deviations are derived that lead to Darcy's law. The theoretical development is not restricted to either homogeneous or spatially periodic porous media; however, the problem ofabrupt changes in the structure of a porous medium is not considered.Roman Letters A interfacial area of the - interface contained within the macroscopic system, m2 - A e area of entrances and exits for the -phase contained within the macroscopic system, m2 - A interfacial area of the - interface contained within the averaging volume, m2 - A * interfacial area of the - interface contained within a unit cell, m2 - Ae area of entrances and exits for the -phase contained within a unit cell, m2 - B second order tensor used to represent the velocity deviation (see Equation (3.30)) - b vector used to represent the pressure deviation (see Equation (3.31)), m–1 - d distance between two points at which the pressure is measured, m - g gravity vector, m/s2 - K Darcy's law permeability tensor, m2 - L characteristic length scale for volume averaged quantities, m - characteristic length scale for the -phase (see Figure 2), m - characteristic length scale for the -phase (see Figure 2), m - n unit normal vector pointing from the -phase toward the -phase (n =–n ) - n e unit normal vector for the entrances and exits of the -phase contained within a unit cell - p pressure in the -phase, N/m2 - p intrinsic phase average pressure for the -phase, N/m2 - p p , spatial deviation of the pressure in the -phase, N/m2 - r 0 radius of the averaging volume and radius of a capillary tube, m - v velocity vector for the -phase, m/s - v phase average velocity vector for the -phase, m/s - v intrinsic phase average velocity vector for the -phase, m/s - v v , spatial deviation of the velocity vector for the -phase, m/s - V averaging volume, m3 - V volume of the -phase contained within the averaging volume, m3 Greek Letters V/V, volume fraction of the -phase - mass density of the -phase, kg/m3 - viscosity of the -phase, Nt/m2 - arbitrary function used in the representation of the velocity deviation (see Equations (3.11) and (B1)), m/s - arbitrary function used in the representation of the pressure deviation (see Equations (3.12) and (B2)), s–1  相似文献   

11.
The slow flow of a viscous fluid through and around porous spheres is considered. The numerical simulation uses a special mixture of computational techniques: quadratic approximation and expansion in power series. The resulting calculations predict the evolution of the main features of the flow if the boundary conditions are varying, particularly if the tangential velocity is neglected or if a viscous filtration velocity is assumed at the sphere surface. The cases of full and hollow spheres with uniform and non uniform permeabilities are considered, the external impermeable walls of the flow being concentric spheres or cylinders. Some influence of viscoelastic properties of the fluid is also given.Nomenclature AA n , An, Bn, bn, Cn, cn, Dn constants of integration - C n (t) Gegenbauer functions with degree n and order –1/2 - e shell thickness - K, K* permeability - P n (t) Legendre functions - Q v volumetric rate of flow - p, p 0, p e pressure, far away pressure, average pressure - R* sphere radius - r, spherical coordinates - Re Reynolds' number (see equation 37) - s, t sinus and cosinus - V 0 * uniform velocity - v velocity component - We Weissenberg's number (see equation (37)) - permeability coefficient - thickness coefficient - structural coefficient - diameter ratio sphere-cylinder - * dynamic viscosity of the fluid - stream functions - normal stress ( rr ) - tangential stress ( ) - 0 * relaxation time of the fluid  相似文献   

12.
In this paper we develop the averaged form of the Stokes equations in terms of weighting functions. The analysis clearly indicates at what point one must choose a media-specific weighting function in order to achieve spatially smoothed transport equations. The form of the weighting function that produces the cellular average is derived, and some important geometrical theorems are presented.Roman Letters A interfacial area of the- interface associated with the local closure problem, m2 - A e area of entrances and exits for the-phase contained within the averaging system, m2 - A p surface area of a particle, m2 - d p 6V p/Ap, effective particle diameter, m - g gravity vector, m/s2 - I unit tensor - K m permeability tensor for the weighted average form of Darcy's law, m2 - L general characteristic length for volume averaged quantities, m - L p general characteristic length for volume averaged pressure, m - L characteristic length for the porosity, m - L v characteristic length for the volume averaged velocity, m - l characteristic length (pore scale) for the-phase - l i i=1, 2, 3 lattice vectors, m - (y) weighting function - m(–y) (y), convolution product weighting function - v special weighting function associated with the traditional averaging volume - m v special convolution product weighting function associated with the traditional averaging volume - m g general convolution product weighting function - m V unit cell convolution product weighting function - m C special convolution product weighting function for ordered media which produces the cellular average - m D special convolution product weighting function for disordered media - m M master convolution product weighting function for ordered and disordered media - n unit normal vector pointing from the-phase toward the-phase - p pressure in the-phase, N/m2 - pm superficial weighted average pressure, N/m2 - p m intrinsic weighted average pressure, N/m2 - p traditional intrinsic volume averaged pressure, N/m2 - p p p m , spatial deviation pressure, N/m2 - r 0 radius of a spherical averaging volume, m - r m support of the convolution product weighting function, m - r position vector, m - r position vector locating points in the-phase, m - V averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 - V cell volume of a unit cell, m3 - V velocity vector in the-phase, m/s - vm superficial weighted average velocity, m/s - v m intrinsic weighted average velocity, m/s - V volume of the-phase contained in the averaging volume, m3 - V p volume of a particle, m3 - v traditional superficial volume averaged velocity, m/s - v v p m spatial deviation velocity, m/s - x position vector locating the centroid of the averaging volume or the convolution product weighting function, m - y position vector relative to the centroid, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters indicator function for the-phase - Dirac distribution associated with the- interface - V /V, volume average porosity - m m * . weighted average porosity - mass density of the-phase, kg/m3 - viscosity of the-phase, Ns/m2 - V /V, volume fraction of the-phase  相似文献   

13.
Based on the complex viscosity model various steady-state and transient material functions have been completed. The model is investigated in terms of a corotational frame reference. Also, BKZ-type integral constitutive equations have been studied. Some relations between material functions have been derived. C –1 Finger tensor - F[], (F –1[]) Fourier (inverse) transform - rate of deformation tensor in corotating frame - h(I, II) Wagner's damping function - J (x) Bessel function - m parameter inh (I, II) - m(s) memory function - m k, nk integers (powers in complex viscosity model) - P principal value of the integral - parameter in the complex viscosity model - rate of deformation tensor - shear rates - [], [] incomplete gamma function - (a) gamma function - steady-shear viscosity - * complex viscosity - , real and imaginary parts of * - 0 zero shear viscosity - +, 1 + stress growth functions - , 1 - stress relaxation functions - (s) relaxation modulus - 1(s) primary normal-stress coefficient - ø(a, b; z) degenerate hypergeometric function - 1, 2 time constants (parameters of *) - frequency - extra stress tensor  相似文献   

14.
Summary The steady laminar flow of an incompressible, viscous, and electrically conducting fluid between two parallel porous plates with equal permeability has been discussed by Terrill and Shrestha [6]. In this paper, using the solution of [6] for the velocity field, the heat transfer problems of (i) uniform wall temperature and (ii) uniform heat flux at wall are solved.For small suction Reynolds numbers we find that the Nusselt number, with increasing Reynolds number, increases for case (i) and decreases for (ii).Nomenclature stream function - 2h channel width - x, y distances measured parallel, perpendicular to the channel walls - U velocity of fluid in the x direction at x=0 - V constant velocity of suction at the wall - nondimensional distance, y/h - nondimensional distance, x/h - f() function defined in (1) - density - coefficient of kinematic viscosity - R suction Reynolds number, V h/ - Re channel Reynolds number, 4U h/ - B 0 magnetic induction - electrical conductivity - M Hartmann number, B 0 h(/)1/2 - K constant defined in (3) - A constant defined in (5) - 4R/Re - q local heat flux per unit area at the wall - k thermal conductivity - T temperature of the fluid - X –1/ ln(1–) - C p specific heat at constant pressure - j current density - Pr Prandtl number, C p/k - P mass transfer Péclet number, R Pr - Pe mass transfer Péclet number, P/ - T 0 temperature at x=0 - T H() temperature in the fully developed region - T h(X, ) temperature in the entrance region - Y n () eigenfunctions, uniform wall temperature - n eigenvalues - e() function defined by (24) - B n 2/3 n 2 - A n constants defined by (28) - a 2m constants defined by (30) - F n () eigenfunctions, uniform wall heat flux - a n , b n , c n , d n , e n constants defined by (45) and (48) - S a parameter, U 2/q - h 1 heat transfer coefficient - T m mean temperature - Nu Nusselt number - Nu T Nusselt number, uniform wall temperature - Nu q Nusselt number, uniform wall heat flux  相似文献   

15.
Two-phase flow in stratified porous media is a problem of central importance in the study of oil recovery processes. In general, these flows are parallel to the stratifications, and it is this type of flow that we have investigated experimentally and theoretically in this study. The experiments were performed with a two-layer model of a stratified porous medium. The individual strata were composed of Aerolith-10, an artificial: sintered porous medium, and Berea sandstone, a natural porous medium reputed to be relatively homogeneous. Waterflooding experiments were performed in which the saturation field was measured by gamma-ray absorption. Data were obtained at 150 points distributed evenly over a flow domain of 0.1 × 0.6 m. The slabs of Aerolith-10 and Berea sandstone were of equal thickness, i.e. 5 centimeters thick. An intensive experimental study was carried out in order to accurately characterize the individual strata; however, this effort was hampered by both local heterogeneities and large-scale heterogeneities.The theoretical analysis of the waterflooding experiments was based on the method of large-scale averaging and the large-scale closure problem. The latter provides a precise method of discussing the crossflow phenomena, and it illustrates exactly how the crossflow influences the theoretical prediction of the large-scale permeability tensor. The theoretical analysis was restricted to the quasi-static theory of Quintard and Whitaker (1988), however, the dynamic effects described in Part I (Quintard and Whitaker 1990a) are discussed in terms of their influence on the crossflow.Roman Letters A interfacial area between the -region and the -region contained within V, m2 - a vector that maps onto , m - b vector that maps onto , m - b vector that maps onto , m - B second order tensor that maps onto , m2 - C second order tensor that maps onto , m2 - E energy of the gamma emitter, keV - f fractional flow of the -phase - g gravitational vector, m/s2 - h characteristic length of the large-scale averaging volume, m - H height of the stratified porous medium , m - i unit base vector in the x-direction - K local volume-averaged single-phase permeability, m2 - K - {K}, large-scale spatial deviation permeability - { K} large-scale volume-averaged single-phase permeability, m2 - K * large-scale single-phase permeability, m2 - K ** equivalent large-scale single-phase permeability, m2 - K local volume-averaged -phase permeability in the -region, m2 - K local volume-averaged -phase permeability in the -region, m2 - K - {K } , large-scale spatial deviation for the -phase permeability, m2 - K * large-scale permeability for the -phase, m2 - l thickness of the porous medium, m - l characteristic length for the -region, m - l characteristic length for the -region, m - L length of the experimental porous medium, m - characteristic length for large-scale averaged quantities, m - n outward unit normal vector for the -region - n outward unit normal vector for the -region - n unit normal vector pointing from the -region toward the -region (n = - n ) - N number of photons - p pressure in the -phase, N/m2 - p 0 reference pressure in the -phase, N/m2 - local volume-averaged intrinsic phase average pressure in the -phase, N/m2 - large-scale volume-averaged pressure of the -phase, N/m2 - large-scale intrinsic phase average pressure in the capillary region of the -phase, N/m2 - - , large-scale spatial deviation for the -phase pressure, N/m2 - pc , capillary pressure, N/m2 - p c capillary pressure in the -region, N/m2 - p capillary pressure in the -region, N/m2 - {p c } c large-scale capillary pressure, N/m2 - q -phase velocity at the entrance of the porous medium, m/s - q -phase velocity at the entrance of the porous medium, m/s - Swi irreducible water saturation - S /, local volume-averaged saturation for the -phase - S i initial saturation for the -phase - S r residual saturation for the -phase - S * { }*/}*, large-scale average saturation for the -phase - S saturation for the -phase in the -region - S saturation for the -phase in the -region - t time, s - v -phase velocity vector, m/s - v local volume-averaged phase average velocity for the -phase, m/s - {v } large-scale averaged velocity for the -phase, m/s - v local volume-averaged phase average velocity for the -phase in the -region, m/s - v local volume-averaged phase average velocity for the -phase in the -region, m/s - v -{v } , large-scale spatial deviation for the -phase velocity, m/s - v -{v } , large-scale spatial deviation for the -phase velocity in the -region, m/s - v -{v } , large-scale spatial deviation for the -phase velocity in the -region, m/s - V large-scale averaging volume, m3 - y position vector relative to the centroid of the large-scale averaging volume, m - {y}c large-scale average of y over the capillary region, m Greek Letters local porosity - local porosity in the -region - local porosity in the -region - local volume fraction for the -phase - local volume fraction for the -phase in the -region - local volume fraction for the -phase in the -region - {}* { }*+{ }*, large-scale spatial average volume fraction - { }* large-scale spatial average volume fraction for the -phase - mass density of the -phase, kg/m3 - mass density of the -phase, kg/m3 - viscosity of the -phase, N s/m2 - viscosity of the -phase, Ns/m2 - V /V , volume fraction of the -region ( + =1) - V /V , volume fraction of the -region ( + =1) - attenuation coefficient to gamma-rays, m-1 - -   相似文献   

16.
Linear and nonlinear viscoelastic properties were examined for a 50 wt% suspension of spherical silica particles (with radius of 40 nm) in a viscous medium, 2.27/1 (wt/wt) ethylene glycol/glycerol mixture. The effective volume fraction of the particles evaluated from zero-shear viscosities of the suspension and medium was 0.53. At a quiescent state the particles had a liquid-like, isotropic spatial distribution in the medium. Dynamic moduli G* obtained for small oscillatory strain (in the linear viscoelastic regime) exhibited a relaxation process that reflected the equilibrium Brownian motion of those particles. In the stress relaxation experiments, the linear relaxation modulus G(t) was obtained for small step strain (0.2) while the nonlinear relaxation modulus G(t, ) characterizing strong stress damping behavior was obtained for large (>0.2). G(t, ) obeyed the time-strain separability at long time scales, and the damping function h() (–G(t, )/G(t)) was determined. Steady flow measurements revealed shear-thinning of the steady state viscosity () for small shear rates (< –1; = linear viscoelastic relaxation time) and shear-thickening for larger (>–1). Corresponding changes were observed also for the viscosity growth and decay functions on start up and cessation of flow, + (t, ) and (t, ). In the shear-thinning regime, the and dependence of +(t,) and (t,) as well as the dependence of () were well described by a BKZ-type constitutive equation using the G(t) and h() data. On the other hand, this equation completely failed in describing the behavior in the shear-thickening regime. These applicabilities of the BKZ equation were utilized to discuss the shearthinning and shear-thickening mechanisms in relation to shear effects on the structure (spatial distribution) and motion of the suspended particles.Dedicated to the memory of Prof. Dale S. Parson  相似文献   

17.
In a previous derivation of Darcy's law, the closure problem was presented in terms of an integro-differential equation for a second-order tensor. In this paper, we show that the closure problem can be transformed to a set of Stokes-like equations and we compare solutions of these equations with experimental data. The computational advantages of the transformed closure problem are considerable.Roman Letters A interfacial area of the- interface contained within the macroscopic system, m2 - A e area of entrances and exits for the-phase contained within the macroscopic system, m2 - A interfacial area of the- interface contained within the averaging volume, m2 - A e area of entrances and exits for the-phase contained within the averaging volume, m2 - B second-order tensor used to respresent the velocity deviation - b vector used to represent the pressure deviation, m–1 - C second-order tensor related to the permeability tensor, m–2 - D second-order tensor used to represent the velocity deviation, m2 - d vector used to represent the pressure deviation, m - g gravity vector, m/s2 - I unit tensor - K C –1,–D, Darcy's law permeability tensor, m2 - L characteristic length scale for volume averaged quantities, m - characteristic length scale for the-phase, m - l i i=1, 2, 3, lattice vectors, m - n unit normal vector pointing from the-phase toward the-phase - n e outwardly directed unit normal vector at the entrances and exits of the-phase - p pressure in the-phase, N/m 2 - p intrinsic phase average pressure, N/m2 - p p , spatial deviation of the pressure in the-phase, N/m2 - r position vector locating points in the-phase, m - r 0 radius of the averaging volume, m - t time, s - v velocity vector in the-phase, m/s - v intrinsic phase average velocity in the-phase, m/s - v phase average or Darcy velocity in the \-phase, m/s - v v , spatial deviation of the velocity in the-phase m/s - V averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 Greek Letters V /V volume fraction of the-phase - mass density of the-phase, kg/m3 - viscosity of the-phase, Nt/m2  相似文献   

18.
Let (X, ) and (Y,C) be two measurable spaces withX being a linear space. A system is determined by two functionsf(X): X X and:X×YX, a (small) positive parameter and a homogeneous Markov chain {y n } in (Y,C) which describes random perturbations. States of the system, say {x n X, n=0, 1,}, are determined by the iteration relations:x n+1 =f(x n )+(x n ,Yn+1) forn0, wherex 0 =x 0 is given. Here we study the asymptotic behavior of the solutionx n as 0 andn under various assumptions on the data. General results are applied to some problems in epidemics, genetics and demographics.Supported in part by NSF Grant DMS92-06677.Supported in part by NSF Grant DMS93-12255.  相似文献   

19.
The paper considers one-parameter families of periodic solutions of real analytic Hamiltonian systems with two degrees of freedom, the parameter being the energy h. Conditions are given which guarantee that this family will undergo infinitely many changes in stability status as h tends to some finite value h 0. First considered is the case of a critical point (with eigenvalues ±, ±i, and >0) of the Hamiltonian at energy h 0 with the property that the family limits to a homoclinic orbit asymptotic to this point. Some generalizations of this case are given, and applications are made to examples such as the Hénon-Heiles Hamiltonian. We obtain an infinite sequence of distinct energy intervals converging to h 0 on which the periodic orbits are elliptic. Requirements for the elliptic stability of the orbits are then given. The additional conditions for an infinite sequence of distinct energy intervals converging to h 0, on which the orbits are hyperbolic, involve the coexistence problem for an associated Hill's equation that appears when the relevant Poincaré maps along the orbits are computed in coordinates. The results are compared to the case where the critical point has eigenvalues (±±i), and >0, investigated by Henrard and Devaney.  相似文献   

20.
Existence theorem for a minimum problem with free discontinuity set   总被引:6,自引:0,他引:6  
We study the variational problem Where is an open set in n ,n2gL q () L (), 1q<+, O<, <+ andH n–1 is the (n–1)-dimensional Hausdorff Measure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号