首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Crystals of 3-diethylaminomethyl-2,2′-biphenol were examined using X-ray diffraction and FT-IR spectroscopy. Their space group is P21/c with a=7.305(1), b=13.816(2), c=29.232(4) Å, β=92.411(3)° and Z=8. The unit cell contains two symmetry-independent zwitterions. The hydrogen atom of the protonated diethylaminomethyl group is linked to the negatively charged phenolate oxygen atom, which in turn is linked to the hydroxyl group by a short hydrogen bond (molecule a: NO=2.604(3), OO=2.512(3) Å; molecule b: NO=2.593(4), OO=2.489(4) Å). The OHOH+N bifurcated intramolecular hydrogen bonds are crystallographically asymmetric. The IR spectrum of the crystals confirms very well the results obtained by the X-ray study. Instead of continuous absorption, only broad bands are found indicating relatively low proton polarisability in the two types of intramolecular hydrogen bonds.  相似文献   

2.
The crystal structures of pharmaceutical product mesalazine (marketed also under different proprietary names as Salofalk, Asacol, Asacolitin, and Claversal) and its hydrochloride are reported. In the crystal mesalazine is in zwitterion form as 5-ammoniosalicylate (1) whereas mesalazine hydrochloride crystallizes in an ionized form as 5-ammoniosalicylium chloride (2). Compound 1 (C7H7O3N) crystallizes in the monoclinic space group P21/n with a = 3.769(1) Å, b = 7.353(2) Å, c = 23.475(5) Å, β = 94.38(2)°, V = 648.7(8) Å3, Z = 4, Dc = 1.568 g cm−3 and μ(MoK) = 1.2 cm−1. Compound 2 (C7H8O3NCl) crystallizes in the triclinic space group P with a = 4.4839(2) Å, b = 5.7936(2) Å, c = 15.6819(5) Å, = 81.329(3)°, β = 88.026(3)°, γ = 79.317(4)°, V = 395.74(3) Å3, Z = 2, Dc = 1.591 g cm−3 and μ(CuK) = 40.8 cm−1. The crystal structures were solved by direct methods and refined to R = 0.041 for 1 and 0.028 for 2, using 607 and 1374 observed reflections, respectively. The configuration of both molecules, with the ortho hydroxyl to a carboxyl group, favours the intramolecular hydrogen bonds. Very complex systems of intermolecular hydrogen bonds were observed in both crystal packings. They are discussed in terms of graph-set notation. The mesalazine crystal structure is characterized by two-dimensional network of hydrogen bonds in the ab plane. The crystal structure pattern of mesalazine hydrochloride is a three-dimensional network significantly supported by N+---HCl interactions.  相似文献   

3.
The crystal and molecular structure of the N-(4-chloro)benzoyl-N′-(4-tolyl)thiourea (C15H13N2OSCl, Mr=304.79) is determined by X-ray diffraction. The crystal structure is monoclinic, space group: P21/n, a=16.097(6), b=4.5989(2), c=19.388(7) Å and β=89.299(6)° V=1434.7(9)Å3, Z=4. FTIR and NMR spectra have been characterized. The interactions of intramolecular and intermolecular hydrogen bonds have been discussed. Density functional theory (DFT) (B3LYP) methods have been used to determine the structure and energies of stable conformers. Minimum energy conformations are calculated as a function of the torsion angle θ (C13–N1–C14–N2) varied every 30°. The optimized geometry corresponding to crystal structure is the most stable conformation. This has partly been attributed to intramolecular hydrogen bonds. With the basis sets of the 6-311G* quality, the DFT calculated bond parameters and harmonic vibrations are predicted in a very good agreement with experimental data.  相似文献   

4.
X-Ray diffraction, IR and 1H NMR studies were performed on the 1:1 adduct of 1,8-bis(dimethylamino)naphthalene (DMAN) with 1,8-dihydroxy-2,4-dinitronaphthalene (DHDNN). The adduct crystallizes in the triclinic system, space group , a = 9.911(2) Å, b = 11.212(2) Å, c = 11.194(2) Å, = 68.95(2)°, β = 79.72(2)°, γ = 73.78(2)°, Z = 2. Both [NHN]+ and [OHO] hydrogen bonds formed in the ion pairs are asymmetrical with lengths equal to 2.574(2) Å and 2.466(4) Å respectively. The [NHN]+ bridge shows a typical behaviour in the IR spectrum, i.e. a low-frequency absorption between 300 and 700 cm−1. The coupling of [OHO] hydrogen bonds with the naphthalene π-electron system is so strong that no absorption related to the proton stretching vibrations can be detected in the high- and low-frequency regions. The 1H NMR chemical shifts for the [NHN]+ and [OHO] bridge protons of 18.63 and 15.81 ppm respectively confirm the strong hydrogen bonds.  相似文献   

5.
N-2-(4-picolyl)-N′-2-chlorophenylthiourea, 4PicTu2Cl, monoclinic, P21/c, a=10.068(5), b=11.715(2), β=96.88(4)°, and Z=4; N-2-(6-picolyl)-N′-2-chlorophenylthiourea, 6PicTu2Cl, triclinic, P-1, a=7.4250(8), b=7.5690(16), c=12.664(3) Å, =105.706(17), β=103.181(13), γ=90.063(13)°, V=665.6(2) Å3 and Z=2 and N-2-(6-picolyl)-N′-2-bromophenylthiourea, 6PicTu2Br, triclinic, P-1, a=7.512(4), b=7.535(6), c=12.575(4) Å, a=103.14(3), β=105.67(3), γ=90.28(4)°, V=665.7(2) Å3 and Z=2. The intramolecular hydrogen bonding between N′H and the pyridine nitrogen and intermolecular hydrogen bonding involving the thione sulfur and the NH hydrogen, as well as the planarity of the molecules, are affected by the position of the methyl substituent on the pyridine ring. The enthalpies of fusion and melting points of these thioureas are also affected. 1H NMR studies in CDCl3 show the NH′ hydrogen resonance considerably downfield from other resonances in their spectra.  相似文献   

6.
Bis[bis{(diphenylphosphinyl)methyl}ethyl phoshinate]bis(ethanol) metal(II) perchlorate complexes, where METAL = Co, Ni or Cu, have been prepared by the reaction of metal perchlorates and bis[(diphenylphosphinyl)methyl]ethyl phosphinate, (RPOEt), in absolute ethanol. The crystal structure of the copper complex is triclinic, space group P , a = 13.688(7) Å, b = 14.424(10) Å, c = 9.865(2) Å, = 110.43(4)°, β = 90.13(2)°, γ = 115.54(4)°, V = 1619.8 Å3, Z = 1 and refined to R = 0.048 (Rw = 0.057). The structure consists of complex cations surrounded by perchlorate anions. Two RPOEt ligands and two ethanols are coordinated to the copper atom situated at the centre of symmetry 0, 0, 0. The RPOEt ligand is bidentate [Cu---O distances 1.969(4) Å, 2.312(4) Å], but the third oxygen atom from phosphoryl bonds is hydrogen bonded [2.669(6) Å], to the oxygen atom of ethanol molecule coordinated to the copper at 1.988(4) Å. The conformations of the ligand and chelate rings, magnetic data, molar conductance values, infrared and electronic spectra are given.  相似文献   

7.
Organolanthanide chloride complexes [(CH3OCH2CH2C5H4)2Ln(μ-Cl)]2 (Ln = La, Pr, Ho and Y) react with excess NaH in THF at 45°C to give the dimeric hydride complexes [(CH3OCH2CH2C5H4)2Ln(μ-H)]2, which have been characterized by IR, 1H NMR, MS and XPS spectroscopy, elemental analyses and X-ray crystallography. [(CH3OCH2CH2C5H4)2Y(μ-H)]2 crystallizes from THF/n-hexane at −30°C, in the triclinic space group P1 with a = 8.795(2) Å, b = 11.040(1) Å, c = 16.602(2) Å, = 93.73(1)°, β = 91.82(1)°, γ = 94.21(1)°, Dc = 1.393 gcm−3 for Z = 2 dimers. However, crystals of [(CH3OCH2CH2C5H4)2Ho(μ-OH)]2 were obtained by recrystallization of holmium hydride in THF/n-hexane at −30°C, in the orthorhombic space group Pbca with a = 11.217(2) Å, b = 15.865(7) Å, c = 17.608(4) Å, Dc = 1.816 gcm−3 for Z = 4 dimers. In the complexes of yttrium and holmium, each Ln atom of the dimers is coordinated by two substituted cyclopentadienyl ligands, one oxygen atom and two hydrogen atoms (for the Y atom) or two hydroxyl groups (for the Ho atom) to form a distorted trigonal bipyramid if the C(η5)-bonded cyclopentadienyl is regarded as occupying a single polyhedral vertex.  相似文献   

8.
Crystals of the Schiff base derivative of gossypol with 3,6,9-trioxa-decylamine were examined using X-ray diffraction, FT-IR and CPMAS spectroscopy. The Schiff base crystallizes as a racemate in the space group C2/c with a=24.390(5), b=12.026(2), c=14.810(3) Å, β=102.78(3)°, and Z=4. The results of the FT-IR, and CPMAS study of the crystals are in agreement with the X-ray data. The FT-IR spectrum of the crystals shows that the OH groups at position 1,1′ and 6,6′ as well as the N16-H proton are involved in weak intermolecular and intramolecular hydrogen bonds, respectively. The FTIR and CP-MAS spectral behaviour is in agreement with the crystallographic results demonstrating the existence of the enamine-enamine tautomeric form of the Schiff base studied.  相似文献   

9.
The crystal structures of propionaldehyde complex (RS,SR)-(η5-C5H5)Re(NO)(PPh3)(η2-O=CHCH2CH3)]+ PF6 (1b+ PF6s−; monoclinic, P21/c (No. 14), a = 10.166 (1) Å, b = 18.316(1) Å, c = 14.872(2) Å, β = 100.51(1)°, Z = 4) and butyraldehyde complex (RS,SR)-[(η5-C5H5)Re(NO)(PPh3)(η2-O=CHCH2CH2CH3)]+ PF6 (1c+PF6; monoclinic, P21/a (No. 14), a = 14.851(1) Å, b = 18.623(3) Å, c = 10.026(2) Å, β = 102.95(1)°, Z = 4) have been determined at 22°C and −125°C, respectively. These exhibit C O bond lengths (1.35(1), 1.338(5) Å) that are intermediate between those of propionaldehyde (1.209(4) Å) and 1-propanol (1.41 Å). Other geometric features are analyzed. Reaction of [(η5-C5H5)Re(NO)(PPh3)(ClCH2Cl)]+ BF4 and pivalaldehyde gives [(η5-C5H5)Re(NO)(PPh3)(η2-O=CHC(CH3)3)]+BF4 (81%), the spectroscopic properties of which establish a π C O binding mode.  相似文献   

10.
Two nickel (imidazole) complexes, Ni(im)6Cl2·4H2O (1) and Ni(im)6(NO3)2 (2) (im=imidazole) have been synthesized and characterized by elemental analysis, IR, UV, TG and single crystal X-ray diffraction. 1 crystallizes in the triclinic space group P-1 with a=8.800(6) Å, b=9.081(6) Å, c=10.565(7) Å, =75.058(9)°, β=83.143(8)°, γ=61.722(8)°, V=718.3(8) Å3, Z=1 and R1 (wR2)=0.0469 (0.1497). 2 crystallizes in the trigonal space group R-3 with a=12.370(6) Å, b=12.370(6) Å, c=14.782(14) Å, =90.00°, β=90.00°, γ=120.00°, V=1959(2) Å3, Z=3 and R1 (wR2)=0.0358 (0.0955). 1 and 2 exhibit different supramolecular network due to their different counter anions and different hydrogen bonding connection. In compound 1, [Ni(im)6]2+ cation and counter anions Cl alternatively array in an ABAB fashion via N–HCl hydrogen bonding. In compound 2, the plane of each NO32− is almost parallel and each NO32− connect three different [Ni(im)6]2+ cations via N–HO hydrogen bonding.  相似文献   

11.
Structures of the following compounds have been obtained: N-(2-pyridyl)-N′-2-thiomethoxyphenylthiourea, PyTu2SMe, monoclinic, P21/c, a=11.905(3), b=4.7660(8), c=23,532(6) Å, β=95.993(8)°, V=1327.9(5) Å3 and Z=4; N-2-(3-picolyl)-N′-2-thiomethoxyphenyl-thiourea, 3PicTu2SeMe, monoclinic, C2/c, a=22.870(5), b=7.564(1), c=16.941(4) Å, β=98.300(6)°, V=2899.9(9) Å3 and Z=8; N-2-(4-picolyl)-N′-2-thiomethoxyphenylthiourea, 4PicTu2SMe, monoclinic P21/a, a=9.44(5), b=18.18(7), c=8.376(12) Å, β=91.62(5)°, V=1437(1) Å3 and Z=4; N-2-(5-picolyl)-N′-2-thiomethoxyphenylthiourea, 5PicTu2SMe, monoclinic, C2/c, a=21.807(2), b=7.5940(9), c=17.500(2) Å, β=93.267(6)°, V=2893.3(5) Å3 and Z=8; N-2-(6-picolyl)-N′-2-thiomethoxyphenylthiourea, 6PicTu2SMe, monoclinic, P21/c, a=8.499(4), b=7.819(2), c=22.291(8) Å, β=90.73(3)°, V=1481.2(9) Å3 and Z=4 and N-2-(4,6-lutidyl)-N′-2-thiomethoxyphenyl-thiourea, 4,6LutTu2SMe, monoclinic, P21/c, a=11.621(1), b=9.324(1), c=14.604(1) Å, β=96.378(4)°, V=1572.4(2) Å3 and Z=4. Comparisons with other N-2-pyridyl-N′-arylthioureas having substituents in the 2-position of the aryl ring are included.  相似文献   

12.
1,2:5,6:9,10:13,14-Tetrabenzo-3,7,11,15-tetradehydro[16]annulene, or tetrabenzocyclyne (QBC) and 1,2:5,6:9,10:13,14:17,18:21,22-hexabenzo-3,7,11,15,19,23-hexadehydro[24]annulene (HBC) have been structurally characterized by X-ray. crystallography. QBC crystallizes in two different space groups; P21/c with a = 10.652(3) Å, b = 10.624(2) Å, c = 19.549(4) Å, β = 93.83(2)°, V = 2207.4(8) Å3, and Z = 4 and P41212 with a = 9.330(1) Å, c = 25.497(8) Å, V = 2219.6(12) Å, and Z = 4. HBC crystallizes in monoclinic P21/n with a = 14.763(3) Å, b = 10.296(2) Å, c = 22.057(4) Å, β = 108.61(3), V = 3177.4(11) Å3, T = 133 K, and Z = 4. Reaction of QBC with dicobaltoctacarbonyl has produced a tetracobalt complex which has been characterized by X-ray crystallography. This complex crystallizes in monoclinic P21/c with a = 14.699(3) Å, b = 17.188(3) Å, c = 17.254(3) Å, β = 112.63(3)°, V = 4023.5(13) Å3, and Z = 4. Only two of the four C---C triple bonds of QBC bind to dicobalthexacarbonyl moieties even when excess dicobaltoctacarbonyl is used.  相似文献   

13.
The ionic adduct of 2,6-dichloro-4-nitrophenol with 4-formylpyridine (which transforms into 4-dihydroxymethylpyridine), crystallizes in the space group P21/c with a = 12.264(2), b = 6.730(1), c = 16.731(3) Å, β = 99.46(3)° and Z = 4. Relatively long N+---HO hydrogen bonds (RN = 2.683(3) Å are formed with strongly asymmetric location of the H-atom. This is well reflected both in IR and UV-VIS spectra. One of the gem diol OH group is attached to the phenolate oxygen atom and the second is engaged in the formation of infinite polyanionic chains via O---HO hydrogen bonds between OH groups.  相似文献   

14.
Crystals of bis(2,6-dimethylpyridine-N-oxide) sulphate are monoclinic, space group P21/c, a = 14.098(2) Å, b = 7.855(1) Å, c = 15.203(3) Å, β = 104.84(1)°. The crystal structure has been refined to R = 0.0373 (2052 reflections). The disordered SO2−4 anion accepts hydrogen bonds from two protonated 2,6-dimethylpyridine-N-oxides and two alternative conformations of the SO2−4 group are distinguished. The occupancy factor of the predominant orientation is 0.63 and the O...O distances are 2.445(2) and 2.453(4) Å; in the second form (fraction, 0.37), these distances are 2.445(2) and 2.544(9) Å.

The PM3 and AM1 methods predict three minima for the title complex, whereas the SAM1 and BLYP/6-31G methods predict only one. All methods predict that molecular complex 3 is the most stable. The SAM1 geometry is very close to that of BLYP/6-31G.

The Fourier transform IR (FTIR) spectrum shows a very intense and broad (continuum) absorption within the 1600-400 cm−1 region, typical of short hydrogen bonds. There is no absorption in the 3000-2000 cm−1 region expected for the longer hydrogen bond (2.544(9) Å) in the less populated orientation. Isotope and solvent effects are discussed.  相似文献   


15.
The structure of 1-hydroxy-1,2,3-benzotriazolium diphenyl phosphate (HOBt/DPP) has been investigated by X-ray analysis. The compound crystallizes in the monoclinic space group P21/n with Z = 4 and the following lattice parameters: a = 11.711(2), b = 12.727(2) and c = 12.794(3) Å, β = 105.12(2)°, V = 1840.9(6) Å3. The structure was solved by direct methods and refined on F2 to R values of wR2 = 0.084 and R1 = 0.034 for 1985 observed reflections. HOBt/DPP has an ionic structure with very short OHO and NHO hydrogen bonds linking the different ions. Owing to these hydrogen bonds, infinite screw-shaped chains which are twisted parallel to the y-axis are formed.  相似文献   

16.
The compound [Zn(H2O)4]2[H2As6V15O42(H2O)]·2H2O (1) has been synthesized and characterized by elemental analysis, IR, ESR, magnetic measurement, third-order nonlinear property study and single crystal X-ray diffraction analysis. The compound 1 crystallizes in trigonal space group R3, a=b=12.0601(17) Å, c=33.970(7) Å, γ=120°, V=4278.8(12) Å3, Z=3 and R1(wR2)=0.0512 (0.1171). The crystal structure is constructed from [H2As6V15O42(H2O)]4− anions and [Zn(H2O)4]2+ cations linked through hydrogen bonds into a network. The [H2As6V15O42(H2O)]6− cluster consists of 15 VO5 square pyramids linked by three As2O5 handle-like units.  相似文献   

17.
N-(ω-carboxyalkyl)morpholine hydrochlorides, OC4H8N(CH2)nCOOH·HCl, n=1–5, were obtained and analyzed by 13C cross polarization (CP) magic angle spinning (MAS) NMR, FTIR and PM3 calculations. The structure of N-(3-carboxypropyl)morpholine hydrochloride (n=3) has been solved by X-ray diffraction method at 100 K and refined to the R=0.031. The crystals are monoclinic, space group P21/c, a=14.307(3), b=9.879(2), c=7.166(1) Å, β=93.20(3)°, V=1011.3(3) Å3, Z=4. In this compound the nitrogen atom is protonated and two molecules form a centrosymmetric dimer, connected by two N+–HCl (3.095(1) Å) and two O–HCl (3.003(1) Å) hydrogen bonds. 13C CP MAS NMR spectra, contrary to the solution, showed non-equivalence of the ring carbon atoms. The PM3 calculations predict a molecular dimer without proton transfer for an HCl complex, while for an HBr complex an ion pairs with proton transfer, and reproduces correctly the conformation of both dimers but overestimates H-bond distances. Shielding constants calculated from the PM3 geometry of ion pairs gave a linear correlation with the 13C chemical shifts in solids.  相似文献   

18.
The crystal structure of NdCl3·C6H12O6·9H2O has been determined. It crystallizes in the monoclinic system, p2(1)/n space group with cell dimensions: a=15.824(3) Å, b=8.633(2) Å, c=16.219(3) Å, β=107.24°, V=2116.1(7) Å3 and Z=4. Each Nd ion is coordinated to nine oxygen atoms, two from inositol and seven from water molecules, with an Nd–O distance of 2.449–2.683 Å, the other two water molecules are hydrogen bonded. No direct contacts exist between Nd and Cl. There is an extensive network of hydrogen bonds in hydroxyl groups, water molecules and chloride ions in the crystal structure of the lanthanide complex. The Raman spectra of Pr–, Nd– and Sm–inositol are similar, which show that the three metal ions have the same coordination mode. The Raman spectra are consistent with their structures.  相似文献   

19.
The hydrothermal reactions of vanadium oxide starting materials with divalent transition metal cations in the presence of nitrogen donor chelating ligands yield the bimetallic cluster complexes with the formulae [{Cd(phen2)2V4O12]·5H2O (1) and [Ni(phen)3]2[V4O12]·17.5H2O (2). Crystal data: C48H52Cd2N8O22V4 (1), triclinic. a=10.3366(10), b=11.320(3), c=13.268(3) Å, =103.888(17)°, β=92.256(15)°, γ=107.444(14)°, Z=1; C72H131N12Ni2O29.5V4 (2), triclinic. a=12.305(3), b=13.172(6), c=15.133(4), =79.05(3)°, β=76.09(2)°, γ=74.66(3)°, Z=1. Data were collected on a Siemens P4 four-circle diffractometer at 293 K in the range 1.59° <θ<26.02° and 2.01°<θ<25.01° using the ω-scan technique, respectively. The structure of 1 consists of a [V4O12]4− cluster covalently attached to two {Cd(phen)2}2+ fragments, in which the [V4O12]4− cluster adopts a chair-like configuration. In the structure of 2, the [V4O12]4− cluster is isolated. And the complex formed a layer structure via hydrogen bonds between the [V4O12]4− unit and crystallization water molecules.  相似文献   

20.
The XeOSeF5+ cation has been synthesized for the first time and characterized in solution by 19F, 77Se and 129Xe NMR spectroscopy and in the solid state by X-ray crystallography and Raman spectroscopy with AsF6 as its counter anion. The X-ray crystal structures of the tellurium analogue and of the Xe(OChF5)2 derivatives have also been determined: [XeOChF5][AsF6] crystallize in tetragonal systems, P4/n, a=6.1356(1) Å, c=13.8232(2) Å, V=520.383(14) Å3, Z=2 and R1=0.0453 at −60°C (Te) and a=6.1195(7) Å, c=13.0315(2) Å, V=488.01(8) Å3, Z=2 and R1=0.0730 at −113°C (Se); Xe(OTeF5)2 crystallizes in a monoclinic system, P21/c, a=10.289(2) Å, b=9.605(2) Å, c=10.478(2) Å, β=106.599(4)°, V=992.3(3) Å3, Z=4 and R1=0.0680 at −127°C; Xe(OSeF5)2 crystallizes in a triclinic system, , a=8.3859(6) Å, c=12.0355(13) Å, V=732.98(11) Å3, Z=3 and R1=0.0504 at −45°C. The energy minimized geometries and vibrational frequencies of the XeOChF5+ cations and Xe(OChF5)2 were calculated using density functional theory, allowing for definitive assignments of their experimental vibrational spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号