首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
利用电纺丝技术制备了二氧化碳环氧丙烷共聚物超细纤维,研究了喷丝口电势、纺丝距离、浓度、溶剂等因素对纤维形貌、直径及均一性的影响.实验结果表明,利用电纺丝法可以制备直径在小于200nm到7μm二氧化碳环氧丙烷共聚物纤维;喷丝口电势和浓度对于共聚物电纺丝纤维是否形成串珠结构有重要影响;电势、距离和纺丝液浓度都对纤维直径及分散系数有较大影响,在一定范围内,随着喷丝口电势增加,纤维平均直径变大而分散系数变小;纺丝距离增大使得纤维平均直径变小,分散系数变大;浓度的增大使得纤维平均直径变大,分散系数变小;不同溶剂配制的溶液体系制备的电纺丝纤维形貌有很大差异,在二氯甲烷和丁酮的体系中,分别观察到了两组较为集中的直径分布.  相似文献   

2.
纤维素纳米纤维很好的结合了纤维素的重要属性和纳米材料的各项特性,但纤维素大分子之间存在大量氢键,使得纤维素较难溶于普通溶剂,导致通过静电纺丝法直接制备纤维素纳米纤维具有一定的难度.而先采用静电纺丝法制备纤维素衍生物纳米纤维,再对纤维素衍生物纳米纤维进行水解也是制备纤维素纳米纤维的一种有效方法.本文对近年来这两种纤维素纳米纤维制备方法的研究进行了综述,并对静电纺制备纤维素纳米纤维的发展前景做出了展望.  相似文献   

3.
静电纺丝法和气流-静电纺丝法制备聚砜纳米纤维   总被引:7,自引:0,他引:7  
应用电纺法制备了聚砜纳米纤维.设计了一种新型的气流静电纺丝装置,其特点是在喷丝头上添加了喷气组件.电纺过程中所用聚砜的特性粘数为0.97dLg,溶剂为二甲基乙酰胺,载气为氮气.研究了聚砜纳米纤维的平均直径与过程参数之间的关系.研究表明影响聚砜纳米纤维的平均直径的主要因素为电压、纺丝液的流速、喷丝头与收集器之间的距离、操作温度以及纺丝液的性质(如粘度、表面张力和电导率).纳米纤维的平均直径和直径分布用扫描电镜表征.应用这种气流静电纺丝法制备的纳米纤维的直径范围是50~500nm.所得纳米纤维的直径依赖于电压、喷丝头与收集器之间的距离以及喷丝液的浓度.结果表明,采用气流静电纺丝不仅能制备较细而且均匀的纳米纤维,而且产量更高.  相似文献   

4.
制备聚多巴胺(PDA)修饰的聚苯乙烯纳米纤维膜(PS NFsM)作为固相萃取吸附介质,可快速提取淡水鱼中3种四环素类(四环素、金霉素、土霉素)和3种氟喹诺酮类(恩诺沙星、环丙沙星、诺氟沙星)药物残留,结合超高效液相色谱-串联质谱(UPLC-MS/MS),建立了药物残留检测的新方法.利用静电纺丝法制备了聚苯乙烯纳米纤维膜...  相似文献   

5.
采用静电纺丝法制备的、平均直径通常小于1000 nm的刺激响应性电纺纳米纤维是一种可响应外界刺激而发生物理化学性能改变的智能聚合物纤维,由它形成的纤维膜具有比表面积大、孔隙率高、对外界刺激产生响应速度快等优点,因此在诸多领域显示出诱人的应用前景,是近年来受到国内外高度关注的一种智能纳米材料。本文首先归纳了制备刺激响应性电纺纳米纤维的三种方法。然后从成纤聚合物的合成或选用、纺丝液配制、静电纺丝和后处理4个方面讨论了制备过程中影响纳米纤维尺寸、结构和刺激响应性等性能的主要因素。接下来重点述评了除电场外的其他各种刺激响应性电纺纳米纤维的设计及其构建研究进展,另外介绍了这些刺激响应性电纺纳米纤维膜在分离与纯化、药物控制释放、伤口敷料、细胞培养、传感器与检测等方面的应用研究情况。最后,就它们的未来研究方向进行了展望。  相似文献   

6.
研究了几种纤维素混合醚酯的制备及其高压静电场纺丝性能,分析了溶剂组成、溶液浓度、分子量、酯化基团对成纤性和纤维直径的影响。结果表明:在非均相条件下,经过碱化、醚化与酯化,得到不同结构的纤维素混合醚酯HPMCP、HPMCT与HPMCAS,均可实现静电纺丝;在甲醇/二氯甲烷=1∶4的溶剂体系中易得到表面光滑纤维;在溶剂组成一定条件下,溶液仅在一定浓度范围可纺,且浓度越低、纺丝电压越高,纺丝平均直径越小;当溶剂组成、溶液浓度一定时,分子量对其溶液纺丝的可纺性有直接影响,HPMCAS仅重均分子量达到7.2×104才能获得表面光滑纺丝纤维;在溶剂组成、溶液浓度和分子量一定的条件下,相邻酰基间距离越小,酸性越强,溶液电导率越大,丝越细。  相似文献   

7.
采用DMSO/H2O混合溶剂法制备了5种不同分子量的PAN,并以PAN为原料,DMF为溶剂,配成纺丝溶液,通过高压静电纺丝技术制备超细纤维毡(UFFM)。研究表明,相同单体组成和浓度、相同反应条件情况下,通过聚合制备PAN,随着混合溶剂中水含量的增加,生成的PAN粘均分子量相应增加,其转化率也增加。聚合所得的不同分子量PAN的热重分析显示,随着PAN分子量的增加,热重曲线的剧烈失重区会越来越明显,剧烈失重区的失重率也呈增加的趋势;高压静电纺丝研究发现,PAN-4和PAN-5纺丝溶液由于分子量过高而不可纺;另外,研究还发现,较高的纺丝电压有利于纤维直径的减小,但相应的纺丝稳定性减小,导致纤维直径分布的离散度增加。  相似文献   

8.
磁场辅助静电纺丝方法能够制备有序纳米纤维,但是其参数之间的匹配关系很少被研究。本文通过正交实验,对影响磁场辅助静电纺丝制备聚丙烯腈纳米纤维的四个工艺参数(溶液浓度、磁铁间距、纺丝电压和注射速度)在3个水平上进行优化筛选。以纤维直径大小、均匀度和纤维有序度为考察目标,同时考虑溶液浓度、磁铁间距与纺丝电压这三个因素之间的两两交互作用,结合极差分析、方差分析,发现溶液浓度是影响纤维直径和均匀度的高度显著因素,溶液浓度和纺丝电压的交互作用对直径均匀度有显著影响,纺丝电压是影响纤维有序度的显著因素。  相似文献   

9.
利用高压直流正负极同电场静电纺丝方法, 制备了聚(3-羟基丁酸-co-4-羟基丁酸酯)共聚物的超细纤维, 实验发现, 正负极同时工作, 形成的宏观纤维形貌与单极相比截然不同, 纤维形态呈现出“蜘蛛网”的变化趋势. 用电磁学理论建立了数学模型. 电压控制在8.0 kV, 溶液质量分数为20%, 电导率控制在0.002—46.7 μS/cm时, 正负极同电场工作时纺丝速率比单极高十几倍; 纤维拉伸取向好于单极纺丝, 该方法为静电纺丝产业化提供了新的思路.  相似文献   

10.
采用低能相反转法,以聚乳酸(PLA)、疏水性药物喜树碱(CPT)溶液为油(O)相,以明胶水溶液、亲水性药物黄芪多糖(APS)为水(W)相,制备水包油(O/W)初乳液.通过控制聚乙二醇(PEG)的浓度和分子量制备O/W纺丝液,经乳液静电纺丝获得PLA/PEG微纳纤维膜.采用粒径分布、光学显微镜(OM)、扫描电子显微镜(SEM)、红外光谱(FTIR)、X射线衍射(XRD)、接触角测试和细胞毒性实验对初乳液和PLA/PEG微纳纤维膜进行表征,并通过激光共聚焦显微镜(CLSM)观察药物的分布情况.结果表明,通过乳液静电纺丝可成功制备亲水性良好的不同微纳结构的PLA/PEG微纳纤维膜.PLA/PEG微纳纤维膜形貌不同,亲水性存在差异,无细胞毒性.体外药物释放结果表明,与pH=6.8和7.4的释放介质相比,在pH=5.8的释放介质中,药物累积释放率较高,表明载药PLA/PEG微纳纤维膜能够有效减缓CPT的释放,而APS释放速率较快,可实现亲疏水性药物的差别性释放.  相似文献   

11.
Ultrathin fibers comprising 2-weak polyelectrolytes, poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH) were fabricated using the electrospinning technique. Methylene blue (MB) was used as a model drug to evaluate the potential application of the fibers for drug delivery. The release of MB was controlled in a nonbuffered medium by changing the pH of the solution. The sustained release of MB in a phosphate buffered saline (PBS) solution was achieved by constructing perfluorosilane networks on the fiber surfaces as capping layers. Temperature controlled release of MB was obtained by depositing temperature sensitive PAA/poly(N-isopropylacrylamide) (PNIPAAM) multilayers onto the fiber surfaces. The controlled release of drugs from electrospun fibers have potential applications as drug carriers in biomedical science.  相似文献   

12.
Polylactic acid (PLA) and silk fibroin (SF) have been widely used in biomedical applications because of their excellent biocompatibility and degradability. In this study, PLA and SF were used as raw materials to prepare hollow fibers with a skin-core structure by wet spinning technology. Scanning electron microscopy observations revealed that the structure of hollow fibers became increasingly uniform with increasing silk fibroin mass fraction. Tensile test results showed that with the increase of silk fibroin content, the elastic modulus of hollow fibers decreased and their tensile properties improved. The results of hollow fibers degradation experiments revealed that increasing the content of silk fibroin can effectively shorten the degradation time of hollow fibers. Ultraviolet spectrophotometry was used to measure the absorbance of tetracycline hydrochloride in phosphate buffer saline and calculate its release rate in hollow fibers with different silk fibroin contents, the result is HFs-9 > HFs-7 > HFs-0 > HFs-5 > HFs-3. The PLA/SF controlled drug release system has precise controlled release of the drug, realizes the separation of the drug from the controlled release system, and solves the problem of sudden drug release. In addition, the controlled release system is non-toxic, degradable, and has excellent mechanical properties.  相似文献   

13.
The development of controlled drug delivery systems based on bio-renewable materials is an emerging strategy. In this work, a controlled drug delivery system based on mesoporous oxidized cellulose beads (OCBs) was successfully developed by a facile and green method. The introduction of the carboxyl groups mediated by the TEMPO(2,2,6,6-tetramethylpiperidine-1-oxyradical)/NaClO/NaClO2 system presents the pH-responsive ability to cellulose beads, which can retain the drug in beads at pH = 1.2 and release at pH = 7.0. The release rate can be controlled by simply adjusting the degree of oxidation to achieve drug release at different locations and periods. A higher degree of oxidation corresponds to a faster release rate, which is attributed to a higher degree of re-swelling and higher hydrophilicity of OCBs. The zero-order release kinetics of the model drugs from the OCBs suggested a constant drug release rate, which is conducive to maintaining blood drug concentration, reducing side effects and administration frequency. At the same time, the effects of different model drugs and different drug-loading solvents on the release behavior and the physical state of the drugs loaded in the beads were studied. In summary, the pH-responsive oxidized cellulose beads with good biocompatibility, low cost, and adjustable release rate have shown great potential in the field of controlled drug release.  相似文献   

14.
Biodegradable fibers for the controlled delivery of anti‐inflammatory agent dexamethasone were developed and studied. Mono and core–shell structure fiber are prepared by wet‐spinning solutions of hydrophobic poly (lactide‐co‐glycolide) and hydrophilic alginic acid shell. The two model drugs, dexamethasone and dexamethasone‐21‐phosphate, were entrapped in core and shell, respectively. These fibers were characterized in terms of morphology, diameters, mechanical properties, in vitro degradation, and drug release. The optical microscopy and scanning electron microscopy photos revealed directly that fibers possessed core–shell structure. The release of dexamethasone and dexamethasone‐21‐phosphate was investigated, and the results showed that alginate shell retarded dexamethasone release significantly in both early and late stages. The core–shell structure fiber release shows a two stage release of dexamethasone and dexamethasone‐21‐phosphate with distinctly different release rates, and minimal initial burst release is observed. The results indicated that the prepared fibers are efficient carrier for both types of dexamethasone. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
A self-powered drug delivery system based on cellulose–polypyrrole (PPy) composite film was developed. The cellulose–PPy composite film was prepared by deposition of drug-contained PPy film on the inner and outer surfaces of a porous cellulose film. After coating a thin layer of active metal such as magnesium on the one side of the composite film, the drug stored in the PPy film can be released autonomously upon exposure to the electrolyte solution. It was confirmed that the drug release from the system followed the galvanic cell mechanism. The amount of the drug released and the release rate of drug can be controlled by adjusting the thicknesses and types of the active metals, respectively. Since the cellulose film is biodegradable and the system obtained is flexible and lightweight, it is therefore expected that this drug delivery system can find in vivo applications.  相似文献   

16.
Luminescent and porous silica fibers have been successfully prepared by using the electrospinning process. The obtained multifunctional silica fibers, which possess a porous structure and display blue luminescence, can serve as a drug delivery host carrier, using ibuprofen (IBU) as a model drug, allowing the investigation of storage/release properties. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FT-IR), N(2) adsorption/desorption, photoluminescence (PL) spectra, and kinetic decay were used to characterize the structural, morphological, and optical properties of the as-obtained samples. The results reveal that the multifunctional silica materials exhibit an irregular porous structure, and display a fiberlike morphology with dimensions of several hundred nanometers in width and several millimeters in length. The obtained silica fibers exhibit an intense broad bluish emission, which might be attributed to impurities and/or defects in the silica fibers. The IBU-loaded silica fiber system shows blue luminescence under UV irradiation and controlled release behavior for IBU. In addition, the emission intensities of silica fibers in the drug carrier system vary with the released amount of IBU, thus allowing the drug release to be easily tracked and monitored by the change of the luminescence intensity.  相似文献   

17.
Biocompatible nanofibers that are capable of adapting to the physiological conditions of the human body have become increasingly important for clinical applications in recent years. Electrospun fiber mats offer particular advantages due to their large surface area and their sorption/release properties. If loaded with drugs, delivery properties can be tailored to a specific release rate. This research work focuses on poly(L-lactic acid) (PLA) and poly(ε-caprolactone) (PCL) incorporating three different model antibiotics as well as bicomponent fibers made from PLA and PCL containing the same model drugs. Tetracycline and chlorotetracycline hydrochloride, and amphotericin B were selected as model drugs and their release properties and antimicrobial effectiveness studied. The surface morphology and the average diameter of the fibers strongly depended on the individual spinning system which in turn influenced the release of the therapeutic compounds from the fibers. Tetracycline was discharged from PCL at the highest rate while amphotericin B was slowest. PCL almost completely liberated any of the drugs over time while PLA only released about 10% total. By forming bicomponent PCL–PLA fibers surface and release characteristics could be modified to fit a sensible drug delivery.  相似文献   

18.
This study was aimed to design core–sheath‐structured polymeric fibers for protein delivery through emulsion electrospinning to enhance the encapsulation efficiency (EE), structural integrity, and activity retention, and to achieve controllable protein release. Integral core–sheath structure was achieved for electrospun fibers with lysozyme loading efficiency of 93.3% and the specific activity retention (SAR) of 64.6%, while the surface protein content (SP) was as low as 4.2%. The emulsion components were optimized to minimize the burst release and extend the release period, and the release profiles were found to be closely related with the fiber characteristics such as the SPs. An initial burst release as low as 6.2% followed by gradual release for 33 days was indicated from poly(ethylene glycol)‐poly(DL ‐lactide) (PELA) fibers. The gradual protein release was determined by a competition of fiber collapse leading to accelerated release and fiber fusion leading to decelerated release. Dependent on the matrix polymer and protein encapsulated, the degradation behaviors of the fiber matrices were correlated with the release rate and the effective lifetime of the drug release. The core–sheath‐structured ultrafine fibers could protect the structural integrity and bioactivity of encapsulated lysozyme, and an increase in the protective effect was demonstrated for fibers prepared from PELA matrix. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Hollow polymer microcapsules as drug carriers have the advantages of drug protection, storage, and controlled release. Microcapsules combined with tissue engineering scaffolds such as electrospun microfibers can enhance long-term local drug retention. However, the combination methods of microcapsules and fibers still need to be further explored. Here, different technical approaches to functionalize electrospun polycaprolactone (PCL) microfibers with silk fibroin (SF) microcapsules through encapsulation and surface immobilization are developed, including direct blending and emulsion electrospinning for encapsulation, as well as covalent and cleavable disulfide-linkage for surface immobilization. The results of “blending” approach show that silk microcapsules with different sizes could be uniformly encapsulated inside electrospun fibers without aggregation. To further reduce the use of organic solvents, the microcapsules in the aqueous phase can be uniformly distributed in the PCL organic phase and successfully electrospun into fibers using surfactant span-80. For surface immobilization, silk microcapsules are efficiently covalent binding to the surface of electrospun PCL fibers via click chemistry and exhibited noncytotoxic. Based on this method, with the incorporation of a disulfide bond, the linkages between microcapsule and fiber could be cleaved under reducing conditions. These microcapsule-electrospun fiber combination methods provide sufficient options for different drug delivery requirements.  相似文献   

20.
Water-soluble, nonionic cellulose-based fibers were prepared from aqueous hydroxypropyl cellulose gels of 5–13-μm diameter by using a high-speed rotary spinning technique. A combination of texture analysis and viscosity measurement was applied to determine the optimum concentration of hydroxypropyl cellulose gels for fiber formation. The examined concentration range of hydroxypropyl cellulose gels was 38–52 % w/w. The textural properties including the adhesiveness of gels of different concentrations were determined based on the load-distance and load-time curves, while the obtained fiber formation was visually observed with an optical microscope. The texture analysis method enabled the determination of the optimum gel concentration from the point of fiber formation. An unequivocal correlation was determined between the adhesiveness of gels and their fiber-forming ability. The adhesiveness has a local minimum where the productivity of the fiber formation process and the micromorphology of the emitted fibers are optimal. Statistical analysis of the distribution of fiber diameters confirmed that in case of the optimum concentration, the distribution approaches normality. Mechanical properties of the prepared fibers were also evaluated using texture analysis, which indicated that the fibers made of gels of the suggested optimum concentration had the most desirable elastic behavior. An optimum concentration range of hydroxypropyl cellulose exists that enables fiber formation with the required characteristics from the point of further pharmaceutical formulation processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号