首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Time-dependent density functional theory (TD-DFT) is applied to the CD spectra of Lambda(deltadeltadelta)-(+)-[Co(S-pn)n(en)(3-n)]3+ (n = 1, 2, 3) and Lambda(deltadeltadelta)-(+)-[Co(en)3]3+ as well as the stereoisomers Delta-((delta)n(lambda)(3-n))-(-)-[Co(S-pn)n(en)(3-n)]3+ (n = 1, 2, 3) and Delta(deltadeltadelta)-(-)-[Co(en)3]3+. Theory is able to reproduce the major differences in the CD spectra of the species with a Lambda-configuration and their isomers with a Delta-configuration in both the d-d and ligand-to-metal CT region. It is further possible to rationalize the trend in terms of a larger azimuthal distortion away from the octahedral geometry in the Lambda-conformation compared to the Delta-configuration. Considerations were also given to the CD spectra of the lel3-isomer, Delta(lambdalambdalambda)-(-)-[Rh(R-pn)3]3+ and the ob-isomer, Lambda(lambdalambdalambda)-(+)-[Rh(S-pn)3]3+.  相似文献   

2.
The detailed analysis of the 1H NMR hyperfine shifts according to the model-free methods shows that the semi-rigid monometallic complexes [Ln(L)(NO3)3] (Ln = Eu-Yb) are isostructural in solution. The associated separation of contact and pseudo-contact contributions to the hyperfine NMR shifts in each rhombic lanthanide complex at room temperature provides paramagnetic susceptibility tensors whose principal magnetic axes match the expected symmetry requirements. Moreover, both axial (Delta chi(ax)) and rhombic (Delta chi(rh)) paramagnetic anisotropies display satisfactory linear dependence on Bleaney's factors, a correlation predicted by the approximate high-temperature expansion of the magnetic susceptibility limited to T(-2). Consequently, the simple, and chemically attracting NMR model-free methods are not limited to axial systems, and can be safely used for the investigation of the solution structures of any lanthanide complexes. Molecular-based structural criteria for the reliable estimation of paramagnetic susceptibility tensors by NMR are discussed, together with the assignment of the labels of the crystal-field and magnetic axes within Bleaney's approach.  相似文献   

3.
4.
The bis(benzene-o-dithiol) ligands H(4)-1, H(4)-2, and H(4)-3 react with [Ti(OC(2)H(5))(4)] to give dinuclear triple-stranded helicates [Ti(2)L(3)](4)(-) (L = 1(4)(-), 2(4)(-), 3(4)(-)). NMR spectroscopic investigations revealed that the complex anions possess C(3) symmetry in solution. A crystal structure analysis for (PNP)(4)[Ti(2)(2)(3)] ((PNP)(4)[14]) confirmed the C(3) symmetry for the complex anion in the solid state. The complex anion in Li(PNP)(3)[Ti(2)(1)(3)] (Li(PNP)(3)[13]) does not exhibit C(3) symmetry in the solid state due to the formation of polymeric chains of lithium bridged complex anions. Complexes [13](4)(-) and [14](4)(-) were obtained as racemic mixtures of the Delta,Delta and Lambda,Lambda isomers. In contrast to that, complex (PNP)(4)[Ti(2)(3)(3)] ((PNP)(4)[15]) with the enantiomerically pure chiral ligand 3(4)(-) shows a strong Cotton effect in the CD spectrum, indicating that the chirality of the ligands leads to the formation of chiral metal centers. The o-phenylene diamine bridged bis(benzene-o-dithiol) ligand H(4)-4 reacts with Ti(4+) to give the dinuclear double-stranded complex Li(2)[Ti(2)(4)(2)(mu-OCH(3))(2)] containing two bridging methoxy ligands between the metal centers. The crystal structure analysis and the (1)H NMR spectrum of (Ph(4)As)(2)[Ti(2)(4)(2)(mu-OCH(3))(2)] ((Ph(4)As)(2)[(16]) reveal C(2) symmetry for the anion [Ti(2)(4)(2)(mu-OCH(3))(2)](2)(-). For a comparative study the dicatechol ligand H(4)-5, containing the same o-phenylene diamine bridging group as the bis(benzene-o-dithiol) ligands H(4)-4, was prepared and reacted with [TiO(acac)(2)] to give the dinuclear complex anion [Ti(2)(5)(2)(mu-OCH(3))(2)](2)(-). The molecular structure of (PNP)(2)[Ti(2)(5)(2)(mu-OCH(3))(2)] ((PNP)(2)[17]) contains a complex anion which is similar to [16](2)(-), with the exception that strong N-H...O hydrogen bonds are formed in complex anion [17](2)(-), while N-H...S hydrogen bonds are absent in complex anion [16](2)(-).  相似文献   

5.
The serendipitous self-assembly of the complex [Mn(III)(2)Zn(II)(2)(Ph-sao)(2)(Ph-saoH)(4)(hmp)(2)] (1),whose magnetic core consists solely of two symmetry equivalent Mn(iii) ions linked by two symmetry equivalent -N-O- moieties, provides a relatively simple model complex with which to study the magneto-structural relationship in oxime-bridged Mn(III) cluster compounds. Dc magnetic susceptibility measurements reveal ferromagnetic (J = +2.2 cm(-1)) exchange resulting in an S = 4 ground state. Magnetisation measurements performed at low temperatures and high fields reveal the presence of significant anisotropy, with ac measurements confirming slow relaxation of the magnetisation and Single-Molecule Magnetism behaviour. Simulations of high field, high frequency EPR data reveal a single ion anisotropy, D((Mn(III))) = -3.83 cm(-1). DFT studies on a simplified model complex of 1 reveal a pronounced dependence of the exchange coupling on the relative twisting of the oxime moiety with respect to the metal ion positions, as suggested previously in more complicated [Mn(III)(3)] and [Mn(III)(6)] clusters.  相似文献   

6.
A multiple-frequency (9.4-325 GHz) and variable-temperature (276-320 K) electron paramagnetic resonance (EPR) study on low molecular weight gadolinium(III) complexes for potential use as magnetic resonance imaging (MRI) contrast agents has been performed. Peak-to-peak linewidths Delta Hpp and central magnetic fields have been analyzed within the Redfield approximation taking into account the static zero-field splitting (ZFS) up to the sixth order and the transient ZFS up to the second order. Longitudinal electronic relaxation is dominated by the static ZFS contribution at low magnetic fields (B < 0.3 T) and by the transient ZFS at high magnetic fields (B > 1.5 T). Whereas the static ZFS clearly depends on the nature of the chelating ligand, the transient ZFS does not. For the relatively fast rotating molecules studied water proton relaxivity is mainly limited by the fast rotation and electronic relaxation has only a marked influence at frequencies below 30 MHz. From our EPR results we can conclude that electronic relaxation will have no influence on the efficiency of Gd(III)-based MRI contrast agents designed for studies at very high magnetic fields (B > 3T).  相似文献   

7.
The magnetic properties of the antiferromagnetic basic iron(III) carboxylate [Fe(3)O(O(2)CPh)(6)(H(2)O)(3)]ClO(4)·py are studied by magnetic susceptometry and electron paramagnetic resonance spectrocopy. Ac susceptometry under moderate external magnetic fields reveals magnetic relaxation at liquid helium temperatures.  相似文献   

8.
One electron paramagnetic parent osazone complex of rhodium of type trans-Rh(L(NHPh)H(2))(PPh(3))(2)Cl(2) (1), defined as an osazone anion radical complex of rhodium(III), trans-Rh(III)(L(NHPh)H(2)(?-))(PPh(3))(2)Cl(2), 1((t-RhL?)), with a minor contribution (~2%) of rhodium(II) electromer, trans-Rh(II)(L(NHPh)H(2))(PPh(3))(2)Cl(2), 1((t-Rh?L)), and their nonradical congener, trans-[Rh(III)(L(NHPh)H(2))(PPh(3))(2)Cl(2)]I(3) ([t-1](+)I(3)(-)), have been isolated and are substantiated by spectra, bond parameters, and DFT calculations on equivalent soft complexes [Rh(L(NHPh)H(2))(PMe(3))(2)Cl(2)] (3) and [Rh(L(NHPh)H(2))(PMe(3))(2)Cl(2)](+) (3(+)). 1 is not stable in solution and decomposes to [t-1](+) and a new rhodium(I) osazone complex, [Rh(I)(L(NHPh)H(2))(PPh(3))Cl] (2). 1 absorbs strongly at 351 nm due to MLCT and LLCT, while [t-1](+) and 2 absorb moderately in the range of 300-450 nm, respectively, due to LMCT and MLCT elucidated by TD-DFT calculations on 3((t-RhL?)), [t-3](+), and Rh(I)(L(NHPh)H(2))(PMe(3))Cl (4). EPR spectra of solids at 295 and 77 K, and dichloromethane-toluene frozen glass at 77 K of 1 are similar with g = 1.991, while g = 2.002 for the solid at 25 K. The EPR signal of 1 in dichloromethane solution is weaker (g = 1.992). In cyclic voltammetry, 1 displays two irreversible one electron transfer waves at +0.13 and -1.22 V, with respect to Fc(+)/Fc coupling, due to oxidation of 1((t-RhL?)) to [t-1](+) at the anode and reduction of rhodium(III) to rhodium(II), i.e., [t-1](+) to electromeric 1((t-Rh?L)) at the cathode.  相似文献   

9.
Six metal carbido-carbonyl clusters have been isolated and recognized as members of a multivalent family based on the dioctahedral Rh(10)(C)(2) frame, with variable numbers of CO ligands, AuPPh(3) moieties, and anionic charge: [Rh(10)(C)(2)(CO)(x)(AuPPh(3))(y)](n-) (x = 18, 20; y = 4, 5, 6; n = 0, 1, 2). Anions [Rh(10)(C)(2)(CO)(18)(AuPPh(3))(4)](-) ([2](-)) and [Rh(10)(C)(2)(CO)(18)(AuPPh(3))(4)](2-) ([2](2-)) have been obtained by the reduction of [Rh(10)(C)(2)(CO)(18)(AuPPh(3))(4)] (2) under N(2), while [Rh(10)(C)(2)(CO)(18)(AuPPh(3))(5)](-) ([3](-)) was obtained from [Rh(10)(C)(2)(CO)(20)(AuPPh(3))(4)] (1) by reduction under a CO atmosphere. [3](-) can be better obtained by the addition of AuPPh(3)Cl to [2](2-). [Rh(10)(C)(2)(CO)(18)(AuPPh(3))(6)] (4) is obtained from [3](-) and 2 as well by the reduction and subsequent addition of AuPPh(3)Cl. The molecular structures of [2](2-) ([NBu(4)](+) salt), [3](-) ([NMe(4)](+) salt), and 4 have been determined by single-crystal X-ray diffraction. The redox activities of complexes 1, 2 and [3](-) have been investigated by electrochemical and electron paramagnetic resonance (EPR) techniques. The data from EPR spectroscopy have been accounted for by theoretical calculations.  相似文献   

10.
Spectroscopic, magnetochemical, and crystallographic data are presented for CsFe(H2O)6PO4, a member of a little-known isomorphous series of salts that facilitates the study of hexa-aqua ions in a quasicubic environment. Above 120 K, the deviations from cubic symmetry are minimal, as shown by the first example of an iron(II) M?ssbauer spectrum that exhibits no measurable quadrupole splitting. Two crystallographically distinct [Fe(OH2)6]2+ complexes are identified from inelastic neutron-scattering (INS) experiments conducted between 2 and 15 K. The data are modeled with the ligand-field Hamiltonian, H = lambdaL? + betaB(kL + 2?) + Delta(tet){Lz2 - (1/3)L(L + 1)} + Delta(rhom){Lx2 - Ly2}, operating in the ground-term (5)T(2g) (Oh) basis. An excellent reproduction of INS, M?ssbauer, HF-EPR, and magnetochemical data are obtained in the 2 and 15 K temperature regimes with the following parameters: lambda = -80 cm(-1); k = 0.8; site A Delta(tet) = 183 cm(-1), Delta(rhom)= 19 cm(-1); site B Delta(tet) = 181 cm(-1), Delta(rhom)= 12 cm(-1). The corresponding zero-field-splitting (ZFS) parameters of the conventional S = 2 spin Hamiltonian are as follows: site A D = 12.02 cm(-)(1), E = 2.123 cm(-1); site B D = 12.15 cm(-1), E = 1.37 cm(-1). A theoretical analysis of the variation of the energies of the low-lying states with respect to displacements along selected normal coordinates of the [Fe(OH2)6]2+, shows the zero-field splitting to be extremely sensitive to small structural perturbations of the complex. The expressions derived are discussed in the context of spin-Hamiltonian parameters reported for the [Fe(OH2)6]2+ cation in different crystalline environments.  相似文献   

11.
The number of independent components, n, of traceless electric 2(l)-multipole moments is determined for C(infinity v) molecules in Sigma(+/-), Pi, Delta, and Phi electronic states (Lambda=0,1,2,3). Each 2(l) pole is defined by a rank-l irreducible tensor with (2l+1) components P(m)((l)) proportional to the solid spherical harmonic r(l)Y(m)(l)(theta,phi). Here we focus our attention on 2(l) poles with l=2,3,4 (quadrupole Theta, octopole Omega, and hexadecapole Phi). An important conclusion of this study is that n can be 1 or 2 depending on both the multipole rank l and state quantum number Lambda. For Sigma(+/-)(Lambda=0) states, all 2(l) poles have one independent parameter (n=1). For spatially degenerate states--Pi, Delta, and Phi (Lambda=1,2,3)--the general rule reads n=1 for l<2/Lambda/ (when the 2(l)-pole rank lies below 2/Lambda/ but n=2 for higher 2(l) poles with l>or=2/Lambda/. The second nonzero term is the off-diagonal matrix element [formula: see text]. Thus, a Pi(Lambda=1) state has one dipole (mu(z)) but two independent 2(l) poles for l>or=2--starting with the quadrupole [Theta(zz),(Theta(xx)-Theta(yy))]. A Delta(Lambda=2) state has n=1 for 2((1,2,3)) poles (mu(z),Theta(zz),Omega(zzz)) but n=2 for higher 2((l>or=4)) poles--from the hexadecapole Phi up. For Phi(Lambda=3) states, it holds that n=1 for 2(1) to 2(5) poles but n=2 for all 2((l>or=6)) poles. In short, what is usually stated in the literature--that n=1 for all possible 2(l) poles of linear molecules--only applies to Sigma(+/-) states. For degenerate states with n=2, all Cartesian 2(l)-pole components (l>or=2/Lambda/) can be expressed as linear combinations of two irreducible multipoles, P(m=0)((l)) and P/m/=2 Lambda)((l)) [parallel (z axis) and anisotropy (xy plane)]. Our predictions are exemplified by the Theta, Omega, and Phi moments calculated for Lambda=0-3 states of selected diatomics (in parentheses): X (2)Sigma(+)(CN), X (2)Pi(NO), a (3)Pi(u)(C(2)), X (2)Delta(NiH), X (3)Delta(TiO), X (3)Phi(CoF), and X (4)Phi(TiF). States of Pi symmetry are most affected by the deviation from axial symmetry.  相似文献   

12.
The iron(II) complex LFeCl 2Li(THF) 2 (L = beta-diketiminate), 1, has been studied with variable-temperature, variable-field Mossbauer spectroscopy and parallel mode electron paramagnetic resonance (EPR) spectroscopy in both solution and the solid state. In zero applied field the 4.2 K Mossbauer spectrum exhibits an isomer shift delta = 0.90 mm/s and quadrupole splitting Delta E Q = 2.4 mm/s, values that are typical for the high-spin ( S = 2) state anticipated for the iron in 1. Spectra recorded in applied magnetic fields yield an anisotropic magnetic hyperfine tensor with A x = +2.3 (+ 1.0) T, A y = A z = -21.5 T ( solution) and a nearly axial zero-field splitting of the spin quintet with D = D x approximately -14 cm (-1) and rhombicity E/ D approximately 0.1. The small, positive value for A x results from the presence of residual orbital angular momentum along x. The EPR analysis gives g x approximately 2.4 (and g y approximately g z approximately 2.0) and reveals a split " M S = +/- 2" ground doublet with a gap distributed around Delta = 0.42 cm (-1). The Mossbauer spectra of 1 show unusual features that arise from the presence of orientation-dependent relaxation and a distribution in the magnetic hyperfine field along x. The origin of the distribution has been analyzed using crystal field theory. The analysis indicates that the distribution in the magnetic hyperfine field originates from a narrow distribution, sigma phi approximately 0.5 degrees , in torsion angle phi between the FeN 2 and FeCl 2 planes, arising from minute inhomogeneities in the molecular environments.  相似文献   

13.
The solution structures of the ytterbium heterobimetallic complexes Na(3)[Yb((S)-BINOL)(3)] (1), K(3)[Yb((S)-BINOL)(3)] (2), and Li(3)[Yb((S)-BINOL)(3)] (3), belonging to a family of well-known enantioselective catalysts, are studied by means of NMR and circular dichroism (CD) in the UV and near-IR regions. The experimental NMR paramagnetic shifts were employed to obtain a refined solution structure of 1. NMR analysis demonstrated that 1, 2, and 3 have the same solution geometry but different magnetic susceptibility anisotropy D factors. By comparing XRD and NMR structures of 1, we demonstrate that, upon dissolution, this complex experiences a rearrangement from the crystalline C(3) symmetry into the solution D(3) symmetry. Remarkably, Yb is not bound to water in solution, and Ln-BINOL bonds are labile as demonstrated through EXSY. NIR-CD is confirmed especially sensitive to changes in the ytterbium coordination sphere.  相似文献   

14.
The complexes trans-[Rh(X)(XNC)(PPh 3) 2] (X = Cl, 1; Br, 2; SC 6F 5, 3; C 2Ph, 4; XNC = xylyl isocyanide) combine reversibly with molecular oxygen to give [Rh(X)(O 2)(XNC)(PPh 3) 2] of which [Rh(SC 6F 5)(O 2)(XNC)(PPh 3) 2] ( 7) and [Rh(C 2Ph)(O 2)(XNC)(PPh 3) 2] ( 8) are sufficiently stable to be isolated in crystalline form. Complexes 2, 3, 4, and 7 have been structurally characterized. Kinetic data for the dissociation of O 2 from the dioxygen adducts of 1- 4 were obtained using (31)P NMR to monitor changes in the concentration of [Rh(X)(O 2)(XNC)(PPh 3) 2] (X = Cl, Br, SC 6F 5, C 2Ph) resulting from the bubbling of argon through the respective warmed solutions (solvent chlorobenzene). From data recorded at temperatures in the range 30-70 degrees C, activation parameters were obtained as follows: Delta H (++) (kJ mol (-1)): 31.7 +/- 1.6 (X = Cl), 52.1 +/- 4.3 (X = Br), 66.0 +/- 5.8 (X = SC 6F 5), 101.3 +/- 1.8 (X = C 2Ph); Delta S (++) (J K (-1) mol (-1)): -170.3 +/- 5.0 (X = Cl), -120 +/- 13.6 (X = Br), -89 +/- 18.2 (X = SC 6F 5), -6.4 +/- 5.4 (X = C 2Ph). The values of Delta H (++) and Delta S (++) are closely correlated (R (2) = 0.9997), consistent with a common dissociation pathway along which the rate-determining step occurs at a different position for each X. Relative magnitudes of Delta H (++) are interpreted in terms of differing polarizabilities of ligands X.  相似文献   

15.
Reaction of [Rh(CO)(2){(R,R)-Ph-BPE}][BF(4)] 1 under 7 bar H(2) provides the dihydride [Rh(H)(2)(CO)(2){(R,R)-Ph-BPE}][BF(4)] 3, which reacts with the neutral hydride [Rh(H)(CO){(R,R)-Ph-BPE}] 2 arising from 3 in THF. The resulting complex is the dimeric monocationic Rh((I))-Rh((III)) complex [Rh(H)(2)(CO)(2){(R,R)-Ph-BPE}][BF(4)] 4.  相似文献   

16.
In this report, we describe the reversible dioxygen reactivity of ((6)L)Fe(II) (1) [(6)L = partially fluorinated tetraphenylporphyrin with covalently appended TMPA moiety; TMPA = tris(2-pyridylmethyl)amine] using a combination of low-temperature UV-vis and multinuclear ((1)H and (2)H) NMR spectroscopies. Complex 1, or its pyrrole-deuterated analogue ((6)L-d(8))Fe(II) (1-d(8)), exhibits downfield shifted pyrrole resonances (delta 28-60 ppm) in all solvents utilized [CH(2)Cl(2), (CH(3))(2)C(O), CH(3)CN, THF], indicative of a five-coordinate high-spin ferrous heme, even when there is no exogenous axial solvent ligand present (i.e., in methylene chloride). Furthermore, ((6)L)Fe(II) (1) exhibits non-pyrrolic upfield and downfield shifted peaks in CH(2)Cl(2), (CH(3))(2)C(O), and CH(3)CN solvents, which we ascribed to resonances arising from the intra- or intermolecular binding of a TMPA-pyridyl arm to the ferrous heme. Upon exposure to dioxygen at 193 K in methylene chloride, ((6)L)Fe(II) (1) [UV-vis: lambda(max) = 433 (Soret), 529 (sh), 559 nm] reversibly forms a dioxygen adduct [UV-vis: lambda(max) = 422 (Soret), 542 nm], formulated as the six-coordinate low-spin [delta(pyrrole) 9.3 ppm, 193 K] heme-superoxo complex ((6)L)Fe(III)-(O(2)(-)) (2). The coordination of the tethered pyridyl arm to the heme-superoxo complex as axial base ligand is suggested. In coordinating solvents such as THF, reversible oxygenation (193 K) of ((6)L)Fe(II) (1) [UV-vis: lambda(max) = 424 (Soret), 542 nm] also occurs to give a similar adduct ((6)L)Fe(III)-(O(2)(-)) (2) [UV-vis: lambda(max) = 418 (Soret), 537 nm. (2)H NMR: delta(pyrrole) 8.9 ppm, 193 K]. Here, we are unable to distinguish between a bound solvent ligand or tethered pyridyl arm as axial base ligand. In all solvents, the dioxygen adducts decompose (thermally) to the ferric-hydroxy complex ((6)L)Fe(III)-OH (3) [UV-vis: lambda(max) = 412-414 (Soret), 566-575 nm; approximately delta(pyrrole) 120 ppm at 193 K]. This study on the O(2)-binding chemistry of the heme-only homonuclear ((6)L)Fe(II) (1) system lays the foundation for a more complete understanding of the dioxygen reactivity of heterobinuclear heme-Cu complexes, such as [((6)L)Fe(II)Cu(I)](+), which are models for cytochrome c oxidase.  相似文献   

17.
本文用BRUKER MSL-400型超导核磁共振仪,对于对位取代四苯基卟啉[H_2(p-X)TPP,X=Cl,H,CH_3,OCH_3],对位取代四苯基卟啉铁(Fe(Ⅲ)(p-X)TPPCl)及其轴向配合物([Fe(Ⅲ)(p-X)TPP(HIm)_2]~+Cl~-,([Fe(Ⅲ)(p-CH_3)TPPYm]~+Cl~-,Y=2-CH_3Im,2-C_2H_5-4-CH_3Im,n-C_3H_7NH_2,N(C_2H_5)_3)的质子核磁共振谱进行了较系统的研究,探讨了分子对称性、电子结构、顺磁效应等对~1H NMR谱的影响以及铁卟啉配合物的电子自旋离域机理。  相似文献   

18.
Treatment of fac-[Rh(aet) 3] (aet = 2-aminoethanethiolate) with 2,2'-bis(bromomethyl)-1,1'-biphenyl gave a mononuclear rhodium(III) complex with a nine-membered S, S-chelate ring, fac-[Rh(aet)(L)] (2+) ([ 1] (2+), L = 2,2'-bis(2-aminoethylthiomethyl)-1,1'-biphenyl). Complex [ 1] (2+) afforded a pair of atrop diastereomers, Delta SS( S ax)/Lambda RR( R ax)-[ 1] (2+) ([ 1a] (2+)) and Delta SS( R ax)/Lambda RR( S ax)-[ 1] (2+) ([ 1b] (2+)), which involves the axial chirality ( R ax/ S ax) about a biphenyl moiety of L, besides the central chirality (Delta/Lambda) about a Rh (III) ion bound by two asymmetric ( R/ S) thioether donors. The atrop diastereomers ([ 1a] (2+) and [ 1b] (2+)) were successfully separated, isolated, and optically resolved, and the circular dichroism (CD) contribution from the axial chirality was evaluated by CD spectral analyses.  相似文献   

19.
The reaction of [Ni(aet)2] with [CoCl2(R,R-chxn)2]+ (aet = 2-aminoethanethiolate, R,R-chxn = 1R,2R-cyclohexanediamine) in water gave a CoIIINiIICoIII trinuclear complex, DeltaRRDeltaRR-[Ni(Co(aet)(2-)(R,R-chxn))2]4+ ([1a]4+), in which two cis(S)-[Co(aet)2(R,R-chxn)]+ units are linked by a central NiII ion through sulfur bridges. The two CoIII units in [1a]4+ uniformly adopt the Delta configuration, which is induced by the chirality of the terminal R,R-chxn ligands. The central NiII ion in [1a]4+ was replaced by a PdII ion to produce an analogous CoIIIPdIICoIII trinuclear complex, DeltaRRDeltaRR-[Pd(Co(aet)2(R,R-chxn))2]4+ ([2a]4+), with retention of the Delta configuration. When racemic R,R/S,S-chxn was employed instead of R,R-chxn, not only the chirality about two CoIII centers but also the chirality about two chxn ligands was unified in the S-bridged trinuclear structure, leading to the selective formation of a pair of enantiomers, DeltaRRDeltaRR/LambdaSSLambdaSS-[M(Co(aet)2(chxn))2]4+ (M = NiII ([1b]4+) and PdII ([2b]4+)). The stereochemical and spectroscopic features of these complexes are discussed on the basis of the electronic absorption, CD, and NMR spectroscopies, along with the crystal structures of [1a]4+ and [2a]4+.  相似文献   

20.
The first paramagnetic 4d transition-metal complex with a redox-active tetrathiafulvalene ligand has been synthesized. The preparation, X-ray structure, electrochemistry, and electron paramagnetic resonance measurements of [Ru(salen)(PPh3)(TTF-CH=CH-Py)](BF4) [1(BF4)] are reported. The crystal structure reveals that the paramagnetic Ru(III) (s = 1/2) center is in a tetragonally elongated octahedral geometry and the TTF-CH=CH-Py ligand is coordinated to the axial position of the Ru(III) ion through the nitrogen atom of the pyridine group. Thus, 1(BF4) is an attractive precursor to study future pi-4d interactions in dual-property conducting and magnetic materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号