首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dinuclear heterospin complexes of CuII and MnII 1,1,1,7,7,7-hexafluoroheptane-2,4,6-trionates ([Cu2L2] and [Mn2L2], respectively) with nitronyl nitroxides 2-R-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide 1-oxyls (NIT-R, R = H, Me, Et, m-C5H4N, m-NCC6H4, p-NCC6H4, PzMe) and the diradical NIT-Pz-(CH2)4-Pz-NIT (Pz is 1,4-pyrazolylene) were synthesized and structurally characterized. In the complexes under study, the CuII atom tends to have the square-pyramidal coordination environment, and the MnII atom is in an octahedral environment. The magnetochemical investigation of the compounds in the temperature range of 2–300 K showed that the antiferromagnetic exchange coupling dominates in the [Cu2L2] molecules, whereas this coupling in [Mn2L2] is manifested in the experimental plot μeff(T) at T < 100 K. The magnetic properties of the heterospin complexes of [Cu2L2] with NIT-R are also determined by the intramatrix antiferromagnetic exchange coupling. For the complexes of [Mn2L2] with NIT-R, the coordination mode of the nitroxide plays a decisive role.  相似文献   

2.
Three new Schiff base ligands N-(3-formyl-5-methylsalicylidene)-2-aminoethanol (H2L1), N-(3-hydroxylmethyl-5-methylsalicylidene)-2-aminoethanol (H3L2), 2,6-bis(o-carboxyphenyliminomethene)-4-methylphenol (H3L3) and their binuclear ZnII complexes [Zn2(HL1)2]Cl2 · 2H2O (ZnHL1), [Zn2(H2L2)2]Cl2 · H2O (ZnH2L2) and [Zn2(HL3)Cl2] · H2O (ZnHL3) were synthesized and characterized by 1H-NMR, elemental analysis, IR and molar conductivity. The results suggest, in every case, two Zn2+ ions were bridged by phenolic OH group oxygen, forming a binuclear complex. The binding properties of these complexes to calf thymus DNA (ct-DNA) were investigated. Absorption and fluorescence spectra are together suggestive that both ZnHL1 and ZnHL3 interact with ct-DNA through intercalative mode, while ZnH2L2 interact with ct-DNA by non-intercalative interaction. Moreover, ZnHL3 can bind to ct-DNA more strongly than ZnHL1. These complexes also exhibited good scavenging activity on the hydroxyl radical (•OH), which are better than those of their corresponding ligands.  相似文献   

3.
Reaction of [CuII(cyclam)](ClO4)2 or [NiII(cyclam)](ClO4)2 in DMF with aqueous 4-hydroxy-3-(4-sulfonato-1-naphthylazo)naphthalen-1-sulfonate disodium salt (carmoisine) yielded coordination polymers {[CuII(cyclam)](carmoisine dianion)(H2O)5}n and powder {[NiII(cyclam)](carmoisine dianion)}n, respectively (cyclam = 1,4,8,11-tetrazacyclotetradecane). They were characterized by powder X-ray diffraction, IR, Raman spectrometry and TGA.  相似文献   

4.
The reaction of MnII chloride with imino nitroxide radical, 2-(2-hydroxy-5-nitrophenyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-1-oxyl (HL2), affords the MnIII complex [MnL2 2L3]·Me2CO, a distinctive feature of which is the simultaneous presence in the ligand shell of both the initial imino nitroxide and the product of its reduction 2-(2-hydroxy-5-nitrophenyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide (HL3). The reaction involves the oxidation of MnII to MnIII and the reduction of the imino nitroxide radical to the corresponding amidine oxide along with a change in the coordination mode of the heterocyclic ligand on going from L2 to L3. The MnIII ion forms with L2 six-membered metallocycles typical of Schiff bases, whereas with L3 MnIII forms a seven-membered metallocycle due to the coordination of L3 by oxygen atoms of the phenol and N-oxide It was found in a similar reaction of NiII chloride with imino nitroxide HL2 that no oxidation of the metal occurred and bis(chelate) [NiL2 2(H2O)2]·2Me2CO was formed in the solid phase. The molecular and crystal structures of the compounds were determined, and their magnetic properties were studied.  相似文献   

5.
The heterospin mixed-ligand complex [Ni6(OH)4Piv4(hfac)4(NIT-Ph)2] (1) (NIT-Ph is 4,4,5,5-tetramethyl-2-phenyl-4,5-dihydro-1H-imidazol-1-oxyl 3-oxide, hfac is hexafluoroacetylacetonate, and Piv is pivalate) was synthesized. The method for the synthesis of complex 1 is based on the replacement of acetone molecules in the hexanuclear complex containing the hexafluoroacetylacetonate and pivalate ligands [Ni6(OH)4Piv4(hfac)4(Me2CO)4] by NIT-Ph molecules. Two monodentate NIT-Ph molecules replace four acetone molecules, because the coordination of the O atom of the nitroxide group results in the blocking of one of the positions in the coordination environment of NiII the access to which is hindered by the phenyl ring of NIT-Ph. As a result, these ions are in a square-pyramidal environment unusual of NiII. In the low-temperature range, the dependence of the magnetization of 1 on the magnetic field is described by the Brillouin function. The reaction of [Ni6Piv4(hfac)4(OH)4(Me2CO)4] with the nitronyl nitroxide radicals 4,4,5,5-tetramethyl-2-(4-pyridyl)-4,5-dihydro-1H-imidazol-1-oxyl 3-oxide (NIT-p-Py) or 4,4,5,5-tetramethyl-2-(1-methyl-1H-imidazol-5-yl)-4,5-dihydro-1H-imidazol-1-oxyl 3-oxide (NIT-Iz) containing the pyridine or 1-methylimidazol-5-yl substituent, respectively, in the side chain is accompanied by the decomposition of the polynuclear fragment and affords the mononuclear complexes Ni(hfac)2(NIT-p-Py)2 and Ni(hfac)2(NIT-Iz)2, respectively. The reaction of 4,4,5,5-tetramethyl-2-(1-methyl-1H-imidazol-5-yl)-4,5-dihyd-ro-1H-imidazol-1-oxyl (Im-Iz), which is the imine analog of NIT-Iz, with [Ni6Piv4(hfac)4(OH)4(Me2CO)4] afforded the decanuclear complex [Ni10(OH)8Piv4(hfac)8(Im-Iz)2(H2O)6]. The molecular and crystal structures of all heterospin compounds were determined, and the magnetic properties of all compounds were investigated in the 2–300 K temperature range.  相似文献   

6.
Complexes of CrIII, MnII, ZnII & CdII with the polydentate carboxamide ligandN′, N′′-bis(3-carboxy-1-oxoprop-2-enyl) 2-Amino-N-arylbenzamidine (H2L) have been synthesized and characterized by elemental analyses, spectroscopic studies (Vibrational, electronic, ESR and 1H-NMR), magnetic susceptibility measurements, thermal studies and powder diffraction studies. The vibrational spectral data are in agreement with coordination of amide and carboxylate oxygen of the ligands with the metal ions. The electronic spectra indicates octahedral or tetrahedral geometry around the metal ions, has been supported by magnetic susceptibility measurements. The results of electron spin resonance & 1H-NMR spectra have supported the results of other spectral techniques. Kinetic and thermodynamic parameters were computed from the thermal data using Coats and Redfern method, which confirm first order kinetics. Powder diffraction determines the cell parameters of the complexes.  相似文献   

7.
The reaction of 5-[2-(methylthio)ethyl]-3-phenyl-2-thioxoimidazolidin-4-one (LH) with salts MCl2· xH2O (M = Co, Ni, Cu; x = 2, 6) afforded the [M(L)Cl]n complexes of NiII, CoII, and CuII. The electrochemical behavior of the LH ligand and its complexes was studied using the cyclic voltammetry and rotating disk electrode techniques. The structures of the synthesized compounds were determined by the data of UV—Vis and IR spectroscopy, mass spectrometry, and electrochemical characteristics. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 339–343, February, 2007.  相似文献   

8.
Six new macrocyclic complexes were synthesized by reaction of 1,4-bis(2-carboxyaldehyde phenoxy)butane with various diamines. Then, their nickel(II) perchlorate complexes were synthesized by the template effect by reaction of 1,4-bis(2-carboxyaldehyde phenoxy)butane, Ni(ClO4)2 · 6H2O and various diamines. The metal-to-ligand ratio of NiII metal complexes was found to be 1:1. The compounds are coordinated to the central metal as tetradentate O2N2 ligands The NiII complexes are proposed to exhibit tetrahedral geometry. NiII metal complexes are 1:2 electrolytes as shown by their molar conductivities (ΛM) in DMF (dimethyl formamide) at 10−3 m. The structure of NiII metal complexes is proposed from elemental analysis, f.t.-i.r., u.v.-vis., magnetic susceptibility measurements, molar conductivity measurements and mass spectra.  相似文献   

9.
5-Formylpyrrolyl-substituted nitronyl and imino nitroxide radicals HL1 and HL2 were synthesized. Their solid phases are formed by packing pairs of the molecules. In the {HL1...HL1} pairs, the dominant interaction is the ferromagnetic exchange with J/kB = 8.8 K (Hamiltonian \(H = 2J\left( {\overrightarrow {{s_1}} \overrightarrow {{s_2}} } \right)\)). The ferromagnetic exchange occurs also in the heterospin molecules [Ni(L1)2], [Cu(L1)2], and [Ni(L2)2(MeOH)2]. In the complexes [Ni(L1)2] and [Cu(L1)2], a small change in the mutual orientation of the coordinated ligands has a considerable effect on the value and the sign of the energy of exchange interactions between the unpaired electrons of the metal ion and paramagnetic ligands.  相似文献   

10.
New potentially tridentate ligands, viz., 3-methyl-1-phenyl-4-(quinolin-8-ylhydrazono)pyrazol-5(1H)-one and 3-methyl-1-phenyl-4-(quinolin-8-ylhydrazono)pyrazole-5(1H)-thione (LH), and their complexes with FeIII were synthesized. The structures of the ligands and metal chelates (FeL2A; A = ClO4 or FeCl4) were studied by 1H NMR spectroscopy and magnetochemistry. The FeL2A complex (A = FeCl4) was investigated by X-ray diffraction. These low-spin complexes have pseudooctahedral structures with the N4X2 ligand environment (X = O or S).  相似文献   

11.
A method was developed for the synthesis of mixed-metal heterospin compounds with the direct coordination of the nitroxide fragment based on the replacement of acetonitrile molecules in the heterotrinuclear complex [Co2Gd(NO3)Piv6(CH3CN)2] with nitroxide molecules. The molecular and crystal structure of the heterospin mixed-ligand heterotrinuclear CoII, GdIII, CoII complex [Co2Gd(NO3)Piv6(NIT-Me)2], where NIT-Me is stable nitronyl nitroxide, was established. The magnetic properties of this complex were investigated in the temperature range of 2–300 K. The coordination of nitroxide groups to CoII ions is responsible for strong exchange interactions between the unpaired electrons in the exchange clusters {>-·O-CoII}, resulting in the virtually complete spin coupling between each coordinated >N-·O group and one of the unpaired electrons of each CoII ion at temperatures below 200 K. Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1742–1745, September, 2007.  相似文献   

12.
Reactions of sodium 4-pyridin-2-yl-pyrimidine-2-sulfonate (NaL) with CuII and MnII ions in water produced a zig-zag chain polymer, [CuL(NCS)] n (1), and a dinuclear complex, [Mn2L2Cl2(H2O)2] (2), respectively. It is observed that counteranions and hydrogen bonds play basic roles in the resulting structure in which 3D networks were formed through intermolecular hydrogen bonding.  相似文献   

13.
N,N’-Polymethylenebis(thiosalicylidene)iminate and macrocyclic dithiadiazadibenzocycloalkadiene complexes of nickel(II) were synthesized and their electrochemical and spectroscopic properties were studied. Dithiadiazadibenzocycloalkadiene complexes containing two DMSO molecules coordinated to Ni2+ and two outer-sphere ClO4 anions were synthesized by the reaction of the corresponding macrocyclic ligands with Ni(ClO4)2·6H2O. The structure of 3,6-dithia-10,14-diazadibenzo[a,g]cyclopentadeca-9,14-dienylnickel(II)[bis(dimethyl sulfoxide) bis-perchlorate] was established by X-ray diffraction. The UV-Vis spectroscopic data are consistent with octahedral structures of diiminobis(sulfide) complexes, a square-planar structure of the thiosalen complex, and distorted tetrahedral structures of other diiminodithiolate complexes. The reaction of S-tert-butylthiosalicylaldehyde with hydrazine hydrate afforded di(ortho-tert-butylthiobenzal)azine. The reaction of the latter with anhydrous NiCl2 produced a colored complex with the simplest molecular formula Ni(C16H12N2S2) in 15% yield. Semiempirical PM3(tm) calculations and the results of UV-Vis, ESR, and 1H NMR spectroscopy demonstrate that this complex has most probably a dimeric structure, in which two Ni centers adopt a nearly square-planar configuration. The complexes are clearly divided into two types according to their electrochemical behavior in DMF solutions. The type 1 is characterized by reversibility of the first reduction steps. The type 2 is characterized by irreversible two-electron reduction as the first step accompanied by deposition of Ni metal on the electrode surface. Rapid electrochemically initiated alkylation occurs in the presence of various alkylating agents (BunI, BunBr, (DmgH)2CoCH3) in a solution of complex 1 in DMF.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 169–183, January, 2005.  相似文献   

14.
Tetradentate N4-type organic ligands containing two 5-(2-pyridylmethylidene)-2-thio-3,5-dihydro-4H-imidazol-4-one fragments linked by two-, four-, or six-carbon polymethylene bridges between the sulfur atoms were synthesized. Mono- and dinuclear complexes of these ligands with copper(II) chloride, as well as with copper(I) and copper(II) perchlorates, were prepared. The structure of the coordination compound (5Z,5′Z)-2,2′-(butane-1,2-diyl-disulfanyldiyl)bis-5-(2-pyridylmethylidene)-3-phenyl-3,5-dihydro-4H-imidazol-4-one with copper(I) perchlorate was established by X-ray diffraction. The copper atom in this complex is in a distorted tetrahedral coordination formed by four nitrogen atoms of two imidazole and two pyridine rings. The perchlorate anion is located in the outer sphere of the complex and is not involved in the coordination with the copper ion. The electrochemical study of the ligands and the complexes was carried out by cyclic voltammetry and rotating disk electrode voltammetry. The initial reduction of the complexes under study occurs at the metal atom. The length of the polymethylene bridge in the ligand has only a slight effect on the redox properties of the ligands and the complexes.  相似文献   

15.
The interaction of [K2FeIII 4(O)2(OOCCMe3)10(HOOCCMe3)2(H2O)2]n with 2-pyridinecarboxaldehyde results in a mixed-valence complex FeIIFeIII 33-O)22-OOCCMe3)7L2··2.5MeCN·3H2O (L = 2-NC5H4COOH0.75K0.25). The structure of the complex was established by X-ray analysis. The magnetic properties of the complex were studied. Dedicated to Academician A. L. Buchachenko on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 2145–2148, September, 2005.  相似文献   

16.
Two new one‐dimensional (1D) coordination polymers (CPs), namely catena‐poly[[[aquacadmium(II)]‐bis(μ‐4b,5,7,7a‐tetrahydro‐4b,7a‐epiminomethanoimino‐6H‐imidazo[4,5‐f][1,10]phenanthroline‐6,13‐dione)] bis(perchlorate) dihydrate], {[Cd(C14H10N6O2)2(H2O)](ClO4)2·2H2O}n or {[Cd(BPG)2(H2O)](ClO4)2·2H2O}n, 1 , and catena‐poly[[lead(II)‐bis(μ‐4b,5,7,7a‐tetrahydro‐4b,7a‐epiminomethanoimino‐6H‐imidazo[4,5‐f][1,10]phenanthroline‐6,13‐dione)] bis(perchlorate) dihydrate], {[Pb(C14H10N6O2)2](ClO4)2·2H2O}n or {[Pb(BPG)2](ClO4)2·2H2O}n, 2 , have been synthesized using bipyridine–glycoluril (BPG; systematic name: 4b,5,7,7a‐tetrahydro‐4b,7a‐epiminomethanoimino‐6H‐imidazo[4,5‐f][1,10]phenanthroline‐6,13‐dione), a urea‐fused tecton, in a mixed‐solvent system. The CdII ion in 1 is heptacoordinated and the PbII ion in 2 is hexacoordinated, with the CdII ion adopting a pentagonal bipyramidal geometry and the PbII ion adopting a distorted octahedral geometry. Both CPs form infinite linear chain structures which are hydrogen bonded to each other leading to the formation of three‐dimensional supramolecular network structures. Topological analysis of CPs 1 and 2 reveals that the structures exhibit 1D chain‐like arrangements in an AB–AB sequence and shows platonic uniform 2‐connected uninodal topologies. Furthermore, a comparative analysis of a series of structures based on the BPG ligand indicates that the size of the metal ion and the types of counter‐ions used have a great influence on the resulting frameworks and properties.  相似文献   

17.
Two polymeric frameworks, [Zn(Dpb)(Oba)] n (Ι) and [Cd(Dpb)(2,6-Pda)H2O] n · nH2O (II) (Dpb = 1,4-bis(pyridin-3-ylmethoxy)benzene, H2Oba = 4,4'-oxybis(benzoic acid), 2,6-H2Pda = 2,6-pyridyl-dicarboxylate), have been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction method (CIF files CCDC 1488269 (Ι), 1488270 (II)). Complex Ι is a 2D layer structure, which is constructed from 1D double chain. Complex II is a 1D chain. The luminescent properties of Ι, II have been investigated with fluorescent spectra in the solid state, I and II displayed a strong fluorescent emission at room temperature.  相似文献   

18.
Cu(ClO4)2·6H2O was shown to react with 2,2′-[propane-1,3-diylbis(thio-2-phenylnemethylidene]-bis(3-pyridylamine) (I) or (5Z)-2-ethoxycarbonylmethyl-(2-pyridylmethylidene)-3,5-dihydro-4H-imidazol-4-one (II) in the presence of CH3CN with the reduction of copper(II) to copper(I) and the formation of the tetrahedral complex CuI(CH3CN)4ClO4 (III). In the course of the reaction the organic ligands I and II were oxidized to the corresponding sulfoxides.  相似文献   

19.
Sr2AIIUO6 (AII = Mg, Ca, Sr, Ba, Mn, Fe, Co, Ni, Zn, and Cd) compounds were synthesized by high-temperature reactions in the solid phase. The crystal structure (space group P21/n) was refined by the Rietveld method for Sr2MgUO6, (Sr0.5Ba0.5)2SrUO4, and Sr2CdUO6, which were synthesized for the first time. IR spectral characteristics were studied. The standard enthalpies of formation of the compounds were determined by reaction calorimetry.  相似文献   

20.
We synthesized 1-ethylimidazolyl-substituted nitronyl nitroxides, i.e., 2-(1-ethylimidazol-4-yl)- (L4Et) and 2-(1-ethylimidazol-5-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole 3-oxide-1-oxyl (L5Et). The stable radical L5Et is an ethyl analog of 2-(1-methylimidazol-5-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole 3-oxide-1-oxyl (L5Me) described earlier, the reaction of which with Cu(hfac)2 (hfac is 1,1,1,5,5,5-hexafluoropentane-2,4-dionate) leads to the formation of the [Cu(hfac)2(L5Me)2] jumping crystals. The reaction of Cu(hfac)2 with L5Et with reagent ratios 1: 2 and 1: 1 yields heterospin complexes [Cu(hfac)2(L5Et)2] and [Cu(hfac)2L5Et]2, respectively. X-ray diffraction study of the mononuclear complex [Cu(hfac)2(L5Et)2] determined that the compound has a packing similar to that of jumping crystals studied earlier, with the only difference being that the O...O contacts between neigh- boring nitroxide groups were found to be 0.3—0.5 Å longer than in [Cu(hfac)2(L5Me)2]. As a result of the lengthening of these contacts, [Cu(hfac)2(L5Et)2] crystals lack chemomechanical activi- ty. We found that when cooling crystals of binuclear complex [Cu(hfac)2L5Et]2 below 50 K, the antiferromagnetic exchange between unpaired electrons of the >N—?O groups of neighboring molecules leads to the full spin-pairing of the nitroxides, with only the Cu2+ ions contributing to the residual paramagnetism of the compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号