首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By the method of tracer particles the velocity field of thermocapillary convection in a thin layer of silicone oil, excited by a quasi-point heat source in the rigid substrate, is investigated as a function of the layer thickness, the temperature of the heater, and the liquid viscosity. The vertical velocity distributions are plotted in several cross-sections at different distances from the vortex axis. A novel method of measuring the profile of the thermocapillary depression, based on mirror reflection from the free liquid surface of radiation scattered by a tracer particle, is proposed. The central segment of the profile of the thermocapillary depression is obtained for different values of the layer thickness, the liquid viscosity and the heater temperature.  相似文献   

2.
半浮区液桥热毛细对流速度场特征   总被引:1,自引:1,他引:1  
液桥流场的速度分布是液桥表面张力梯度驱动对流的一个重要研究内容。通过地面模拟微重力环境的液桥实验以及数值计算,研究了外加温差、液桥腰径等对流场速度分布的影响,实验结果与数值计算结果相当符合。结果还表明,当液桥腰径减小时,流场的结构发生了变化,涡心由一个转化成两个。  相似文献   

3.
The stability of thermocapillary two-component liquid flow is studied taking into account thermal diffusion. An explicit expression is obtained to construct neutral Marangoni numbers under the assumption of monotonicity of perturbations. The thermocapillary and hydrodynamic instability mechanisms are considered. It is shown that plane perturbations are the greatest hazard to the stability of return flow.__________Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 5, pp. 86–92, September–October, 2005.  相似文献   

4.
An expression is obtained for the angular velocity of a spherical dispersed particle in a viscous fluid in an external vortex field with an harmonic time dependence. This expression is then used for investigating a system of two rotating dispersed particles whose rotation is the result of the interaction of the particles in the field of an incident sound wave. It is found that such a system possesses a rather interesting nontrivial property: under certain conditions it has a resonant frequency at which the rotation of the particles relative to the fluid is most intense.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.4, pp. 186–188, July–August, 1992.  相似文献   

5.
Jet formation was studied in the region of two-dimensional and three-dimensional waves in a heated liquid film flowing down a vertical surface. Jet-to-jet spacings were measured versus the film Reynolds number and the heat flow density. Three-dimensional waves on the film surface were formed naturally or by artificial perturbations. In addition to the thermocapillary mechanism of jet formation, a thermocapillary–wavy mechanism was found to exist.  相似文献   

6.
A new method of pumping a fluid through a microchannel device using a gas bubble-piston, set in motion by the thermocapillary force induced by a light beam, is proposed. To demonstrate the method, a model micropump has been assembled. The model consists of two reservoirs connected by two channels with a bubble-piston driven by a light beam. The pumping rate and the volume per piston stroke are evaluated experimentally. The method proposed is compared with known microfluid pumping methods. Some advantages of the new method are indicated.  相似文献   

7.
In many technological processes, thin extended layers of nonuniformly heated fluid are used [1–3]. If they are sufficiently thin, thermocapillary forces have a decisive influence on the occurrence and development of motion of the fluid [4–6]. Investigation of convective motion in such a layer is of great interest for estimating the intensity of heat and mass transfer in technological processes. This paper is a study of unsteady thermocapillary motion in a layer of viscous incompressible fluid with free surface in which a thermal inhomogeneity is created at the initial time. Approximate expressions are obtained for the fields of the velocity, temperature, and pressure in the fluid, and also for the shape of the free surface.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 17–25, May–June, 1991.  相似文献   

8.
An experimental and theoretical study has been made of the motion of an air bubble due to the thermocapillary effect in a thin horizontal layer of liquid bounded above and below by solid walls. The dependence of the speed of thermocapillary drift of the bubble on its radius has three characteristic regions, which correspond to different ratios of the bubble diameter to the thickness of the liquid layer. The results of theoretical solution of the problem for each of the three regions are compared with the experimental results.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 62–67, May–June, 1984.We thank V. A. Briskman for suggesting the subject and for constant interest in the work, and also A. F. Pshenichnikov for valuable advice.  相似文献   

9.
In [1] the problem of natural and thermocapillary convection in a spherical vessel containing a bubble under low-gravity conditions, i.e., at low Bond numbers (Bo 1), was examined in one of the limiting cases — where the bubble is located in the center of the vessel. The results of [1] and experimental data, however, indicate that when heat is supplied from outside over a long period, the most probable location of the bubble under low-gravity conditions is at the vessel wall. In this paper, which is a continuation of [1], convection and heat transfer in the latter case are investigated. Possible locations of the bubble at the top and bottom of the vessel relative to the resultant of the weak mass forces are discussed. It is shown that natural and thermocapillary convection contribute to the increase in the mean free-surface temperature, which determines the increase in pressure in the closed vessel for a prescribed heat flux. The rates of increase of this temperature are compared in the cases considered here and in [1–4], where there is a fuller bibliography relating to convective heat and mass transfer under low-gravity conditions.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 154–159, March–April, 1976.  相似文献   

10.
Vortex shedding from a fixed rigid square cylinder in a cross flow was manipulated by perturbing the cylinder surface using piezo-ceramic actuators, which were activated by a feedback hot-wire signal via a proportional–integral–derivative (PID) controller. The manipulated flow was measured at a Reynolds number (Re) of 7,400 using particle image velocimetry (PIV), laser-induced fluorescence (LIF) flow visualisation, two-component laser Doppler anemometry (LDA), hot wires and load cells. It is observed that the vortex circulation, fluctuating streamwise velocity, lift and drag coefficients and mean drag coefficient may decrease by 71%, 40%, 51%, 42% and 20%, respectively, compared with the unperturbed flow, if the perturbation velocity of the cylinder surface is anti-phased with the flow lateral velocity associated with vortex shedding. On the other hand, these quantities may increase by 152%, 90%, 60%, 67% and 37%, respectively, given in-phased cylinder surface perturbation and vortex shedding. Similar effects are obtained at Re=3,200 and 9,500, respectively. The relationship between the perturbation and flow modification is examined, which provides insight into the physics behind the observation.  相似文献   

11.
张嘉锋  张曦  韩耘  何世平 《实验力学》2000,15(3):275-279
在地面上用二维液体盒研究了热壁下气泡周围液体中的热毛细对流现象,并应用电子散斑干涉技术(ESP)对热毛细对流温度场进行了实时检测研究,给出了部分典型的实验结果。  相似文献   

12.
半浮区液桥热毛细振荡流   总被引:1,自引:0,他引:1  
唐泽眉  阿燕  胡文瑞 《力学学报》1999,31(4):415-422
采用非定常、三维直接数值模拟方法研究大Pr数半浮区液桥热毛细对流从定常流向振荡流的过渡过程.文中详细描述了热毛细振荡流的起振和振荡特征,给出了液桥横截面上振荡流的流场和温度分布.在地面引力场条件下计算的结果与地面实验的结果进行比较,得出液桥水平截面上的流场和温度分布图样以一定的速度旋转,自由表面固定点处流体的环向流速正、负交替变化的一致结论.  相似文献   

13.
Convective instability in a layered system due to the thermocapillary effect was investigated in [1–5]. In these studies it was shown that the perturbations responsible for equilibrium crisis may build up either monotonically or in an oscillatory fashion. In [6] the stabilizing effect of a surface active agent (SAA) on thermocapillary instability was established for a layer with a free surface. For layers of infinite thickness the effect of SAA on thermocapillary convection was studied in [7–9]. The present investigation is concerned with thermocapillary convection in a system of two layers of finite thickness in the presence of an SAA. Convection due to the lift force is not considered. It is established that the principal result of the action of the SAA is not the stabilizing effect on the monotonic mode but the appearance of a new type of oscillatory instability.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2 pp. 3–8, March–April, 1986.In conclusion the authors wish to thank E. M. Zhukhovitskii for discussind the results.  相似文献   

14.
This paper investigates flow past a rotating circular cylinder at 3600?Re?5000 and α?2.5. The flow parameter α is the circumferential speed at the cylinder surface normalized by the free-stream velocity of the uniform cross-flow. With particle image velocimetry (PIV), vortex shedding from the cylinder is clearly observed at α<1.9. The vortex pattern is very similar to the vortex street behind a stationary circular cylinder; but with increasing cylinder rotation speed, the wake is observed to become increasing narrower and deflected sideways. Properties of large-scale vortices developed from the shear layers and shed into the wake are investigated with the vorticity field derived from the PIV data. The vortex formation length is found to decrease with increasing α. This leads to a slow increase in vortex shedding frequency with α. At α=0.65, vortex shedding is found to synchronize with cylinder rotation, with one vortex being shed every rotation cycle of the cylinder. Vortex dynamics are studied at this value of α with the phase-locked eduction technique. It is found that although the shear layers at two different sides of the cylinder possess unequal vorticity levels, alternating vortices subsequently shed from the cylinder to join the two trains of vortices in the vortex street pattern exhibit very little difference in vortex strength.  相似文献   

15.
In an earlier study [1], the present authors used the complete nonlinear hydrodynamic equations to investigate thermocapillary convection in a two-layer system. Oscillatory instability of the equilibrium was established for some ratios of the parameters. In the present paper, a study is made of the influence on the thermocapillary convective motions of two different factors — curvature of the interface and gravity. It is established that curvature of the interface can lead to significant changes in the flow structure and hysteresis transitions between convection regimes. In the case of the joint influence of the thermogravitational and thermocapillary instability mechanisms, many different flow regimes are found: steady motions with different directions of rotation of the vortices and periodic and nonperiodic oscillatory motions with different spatial structures.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 175–179, May–June, 1984.We thank E. M. Zhukovitskii for discussing the results.  相似文献   

16.
The previous analysis of fields near the upper triple point of the floating–zone melting process is supplemented by the analysis of thermocapillary forces on the melt surface. It is shown that the effect of these forces is large in the general case, and a melt film with a macroscopic radius of curvature may be formed only if the temperature gradient over the melt surface and thermocapillary forces are small; in this case, the angular coordinates of the melt–film cross section are also small.  相似文献   

17.
高鹏  尹兆华  胡文瑞 《力学进展》2008,38(3):329-338
液滴或气泡的迁移现象无论是在流体力学的基础研究中,还是在材料加工,化学工程等实际应用中都是一个很重要的课题。在微重力环境中,如果在液滴或气泡所在的母液中外加一个温度场,则液滴或气泡就会由于表面张力分布的不均匀而发生迁移运动。这种运动被称为Marangoni迁移或热毛细迁移运动。本文综述了液滴或气泡的热毛细迁移问题历史研究中理论分析,数值模拟以及实验方面的主要结果,阐述了该问题的研究发展过程。目前液滴迁移问题的研究状况,理论分析解还只限于线性及弱非线性的定常问题,数值模拟工作已经得到了在热对流作用比较小的时候液滴的非定常迁移过程,但是对于热对流影响很大的情况(Marangoni数大于100)则尚未得到过与实验中观测到的相一致的理论结果。本文在总结前人研究的基础上,同时给出了在对于热对流作用较大时液滴热毛细迁移非定常问题的最新的数值模拟的结果,并对该问题在此情况下产生的新的变化也给予了分析。最后,文中分析了当前研究中所存在的问题并进一步展望了液滴热毛细迁移问题在未来的发展方向。   相似文献   

18.
In a slowly rotating annular cylindrical container the free liquid surface (liquid-gas interface) is subjected to a temperature gradient in radial direction. The temperature dependent surface tension creates a shear stress on the interface which is transmitting a thermocapillary convection in the bulk of the liquid. For constant temperature T 1 of the inner and T 2 of the outer wall a steady Marangoni convection takes place, exhibiting a double vortex ring of equal directional flow. For time-oscillatory temperatures of the walls a time-dependent thermocapillary convection appears, which will create on the free liquid surface various wave patterns. They shall, depending on the forcing frequency of the temperature, exhibit resonance peaks. The velocity distribution and the response magnitude inside the container has been determined. Received on 3 September 1997  相似文献   

19.
The problem of mass transfer between an isolated bubble and the continuous phase in a pseudofluidized layer is considered, when the rising velocity of the bubble exceeds the pseudofluidization rate. In this case the bubble with the surrounding region, a so-called two-phase system, is surrounded by a surface current impermeable to the liquid [1–3], and the problem reduces to determining the concentration field and the total flow on the material surface. The problem is solved for large and small Peclet numbers by a boundary layer diffusion method and by asymptotic expansion matching.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 42–49, July–August, 1973.  相似文献   

20.
In a two-layer system loss of stability may be monotonic or oscillatory in character. Increasing oscillatory perturbations have been detected in the case of both Rayleigh [1, 2] and thermocapillary convection [3–5]; however, for many systems the minimum of the neutral curve corresponds to monotonic perturbations. In [5] an example was given of a system for which oscillatory instability is most dangerous when the thermogravitational and thermocapillary instability mechanisms are simultaneously operative. In this paper the occurrence of convection in a two-layer system due to the combined action of the Rayleigh (volume) and thermocapillary (surface) instability mechanisms is systematically investigated. It is shown that when the Rayleigh mechanism operates primarily in the upper layer of fluid, in the presence of a thermocapillary effect oscillatory instability may be the more dangerous. If thermogravitational convection is excited in the lower layer of fluid, the instability will be monotonic.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 166–170, January–February, 1987.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号