首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Thin InAs epilayers were grown on GaAs(1 0 0) substrates exactly oriented and misoriented toward [1 1 1]A direction by atmospheric pressure metalorganic vapor phase epitaxy. InAs growth was monitored by in situ spectral reflectivity. Structural quality of InAs layers were studied by using high-resolution X-ray diffraction. No crystallographic tilting of the layers with respect to any kind of these substrates was found for all thicknesses. This result is discussed in terms of In-rich growth environment. InAs layers grown on 2° misoriented substrate provide an improved crystalline quality. Surface roughness of InAs layers depend on layer thickness and substrate misorientation.  相似文献   

2.
We report on the optical characteristics of InAs quantum dots based on the InP(1 0 0) substrate grown by gas source molecular beam epitaxy without assisting any other methods. The photoluminescence was carefully investigated by adjusting the thickness of InAs layers and the growth temperature. A wide range of emitting peaks is obtained with the increase in the thickness of InAs layers. In addition, we find that the morphology and shape of quantum dots also greatly depend on InAs layers. The images of atomic force microscopy show that the quantum dots like forming into quantum dashes elongated along the [0 1 ?1] direction when the thickness of InAs layers increased. A critical thickness of formation quantum dots or quantum dash is obtained. At the same time, we observe that the growth temperature also has a great impact on the emission wavelength peaks. High qualities of InAs/InP(1 0 0) quantum dots providing their emission wavelength in 1.55 μm are obtained, and good performances of quantum dots lasers are fabricated.  相似文献   

3.
The influence of GaAs(1 0 0) 2° substrate misorientation on the formation and optical properties of InAs quantum dots (QDs) has been studied in compare with dots on exact GaAs(1 0 0) substrates. It is shown that, while QDs on exact substrates have only one dominant size, dots on misoriented substrates are formed in lines with a clear bimodal size distribution. Room temperature photoluminescence measurements show that QDs on misoriented substrates have narrower FWHM, longer emission wavelength and much larger PL intensity relative to those of dots on exact substrates. However, our rapid thermal annealing (RTA) experiments indicate that annealing shows a stronger effect on dots with misoriented substrates by greatly accelerating the degradation of material quality.  相似文献   

4.
Impact of step height of silicon carbide (SiC) substrates on heteroepitaxial growth of aluminum nitride (AlN) was investigated. Step-and-terrace structures with various step heights, 6 monolayer (ML), 3ML and 1ML, were formed on 6H-SiC (0 0 0 1) vicinal substrates by high-temperature gas etching. 2H-AlN layers were grown on the substrate by plasma-assisted molecular-beam epitaxy (MBE) and then these layers were characterized by atomic-force microscopy (AFM) and X-ray diffraction (XRD). High-quality AlN can be grown on SiC substrates with 6ML- and 3ML-height step, while AlN grown on SiC substrates with 1ML-height step exhibited inferior crystalline quality. A model for high-quality AlN growth on SiC substrates with 3ML-height step is proposed.  相似文献   

5.
Few-layer graphene (FLG) was grown on Al2O3 (0 0 0 1) substrates at different temperatures via direct carbon atoms deposition by using solid source molecular beam epitaxy (SSMBE) method. The structural properties were characterized by reflection high energy electron diffraction (RHEED), Raman spectroscopy and near-edge X-ray absorption fine-structure (NEXAFS). The results showed that the FLG started to form at the substrate temperature of 700 °C. When the substrate temperature increased to 1300 °C, the quality of the FLG was the best and the layer number was estimated to be less than 5. At higher substrate temperature (1400 °C or above), the crystalline quality of the FLG would be deteriorated. Our experiment results demonstrated that the substrate temperature played an important role on the FLG layer formation on Al2O3 (0 0 0 1) substrates and the related growth mechanism was briefly discussed.  相似文献   

6.
In this work, the effects of the substrate misorientation in the nitrogen incorporation in InGaAsN (1 1 1)B p–i–n diode structures grown by molecular beam epitaxy are discussed. The (1 1 1)B surfaces misoriented towards [2–1–1] are found to be more suitable to enhance the optical quality of the samples. We also found that the nitrogen incorporation is highly dependent on the growth temperature as well as on the V–III flux ratio. In addition to this, the optical properties and crystal quality of these structures depend strongly on the nitrogen content, as in the case of similar samples grown on (1 0 0) surfaces. High nitrogen contents (up to 3%) in InGaAsN layers grown on two different misoriented (1 1 1)B GaAs substrates are reported. Besides, low-temperature photoluminescence emission wavelengths longer than 1.4 μm are achieved using (1 1 1)B misoriented substrates.  相似文献   

7.
ZnO nanowires were fabricated on c-plane (0 0 0 1), a-plane (1 1 2¯ 0) sapphire, and boron doped p-type (1 0 0) Si substrates in vacuum furnace by simple physical vapor deposition. Room temperature photoluminescence spectra of the nanowires show the near band-edge emission and the deep-level green light emission. The ZnO nanowires formed on sapphire (1 1 2¯ 0) substrates exhibited enhancement on optical properties and better crystalline structures than those of nanowires grown on other substrates. The formation mechanism and the effect of substrate direction on structural and optical properties of the nanowires are discussed.  相似文献   

8.
Atomic force microscopy (AFM) has been used to characterize the growth of Au deposited via evaporation onto the positive face of single crystalline, lithium niobate, LiNbO3(0 0 0 1) surface. In order to study the mechanisms for the ordering and aggregation of a noble metal on this ferroelectric surface, topographic and phase contrast imaging of the fractional surface coverage of Au were performed. Atomically flat, uniformly poled LiNbO3 surfaces were prepared via an ambient high temperature anneal and served as a support for the thin gold films. These gold atomic layers were grown using electron bombardment evaporation sources under ultra-high vacuum (UHV) conditions and subsequently characterized under both vacuum and ambient environments. Using AFM it was found that gold preferentially nucleates at the top of LiNbO3 substrate step edges. With increased coverage, island formation proceeds due to local aggregation of adsorbed gold on each substrate terrace. Based on local imaging of the growth morphology, the data is discussed in terms of thin film growth mechanisms as well as the influence of native surface features such as defects and charge distribution. Understanding growth mechanisms for gold layers on ferroelectric surfaces allows for a fuller appreciation of how atomic deposition of metal atoms on patterned poled LiNbO3 surfaces would occur as well as yielding greater insight on the atomic characteristics of metals on ferroelectric interfaces.  相似文献   

9.
Since Stormer and Tsang have introduced the first two-dimensional hole gas (2DHG) in the GaAs/AlGaAs heterosystem, the choice of suitable dopants was limited to beryllium and silicon over the last 20 years. Both acceptor atoms have significant disadvantages, i.e. either high-diffusion rates or a limitation to specific growth directions. Utilizing a carbon filament-doping source, we prepared high-quality 2DHGs in the (0 0 1) and the nonpolar (1 1 0) crystal plane with carrier mobilies beyond 106 cm2/Vs in quantum well and single interface structures. Low-temperature magnetoresistance measurements recover a large number of fractional QHE states and show a pronounced beating pattern from which the Rashba induced spin-splitting has been determined. In addition, 2DHGs have been grown on cleaved edges of (1 1 0) and (0 0 1) wafers with transport features in qualitative agreement to our findings on (1 1 0) substrates.  相似文献   

10.
Photoelectron spectroscopy, low-energy electron diffraction, and scanning probe microscopy were used to investigate the electronic and structural properties of graphite layers grown by solid state graphitization of SiC(0 0 0 1) surfaces. The process leads to well-ordered graphite layers which are rotated against the substrate lattice by 30°. On on-axis 6H-SiC(0 0 0 1) substrates we observe graphitic layers with up to several 100 nm wide terraces. ARUPS spectra of the graphite layers grown on on-axis 6H-SiC(0 0 0 1) surfaces are indicative of a well-developed band structure. For the graphite/n-type 6H-SiC(0 0 0 1) layer system we observe a Schottky barrier height of ?B,n = 0.3 ± 0.1 eV. ARUPS spectra of graphite layers grown on 8° off-axis oriented 4H-SiC(0 0 0 1) show unique replicas which are explained by a carpet-like growth mode combined with a step bunching of the substrate.  相似文献   

11.
Photomodulated reflectance spectroscopy (PR) and X-ray diffraction (XRD) were used for the characterization of highly strained ultrathin InAs quantum wells and modulated InGaAs layers in GaAs grown by metal-organic vapor phase epitaxy (MOVPE). Structures were grown in AIXTRON 200 reactor at 500 °C on (1 0 0) oriented GaAs substrates by sequential growth of InAs and GaAs layers. Various PR spectral features corresponding to optical transitions between ground and excited states in the layers were identified by means of simulation of electronic states in these structures using nextnano3 quantum simulator. Different models of InAs layer growth were used to explain both the XRD and PR data. Results show that the Gaussian distribution of In atoms within few monolayers gives the best fit for our MOVPE grown ultrathin InAs layers.  相似文献   

12.
We investigated the growth of thin NaCl films on Ag(1 0 0) by spot-profile-analysis low energy electron diffraction (SPA-LEED), varying extensively the growth temperature (200–500 K) and the film thickness (0.5–14 ML). The incommensurate growth of NaCl on Ag(1 0 0) yields (1 0 0)-terminated epitaxial NaCl domains, which are preferentially oriented with their [0 1 0] axis parallel to that of the substrate. At 300 K, the NaCl domains exhibit an azimuthal mosaicity by 14° around this orientation and the NaCl unit cell is laterally contracted in the first layers by 0.9% with respect to the bulk. At higher growth temperatures, the azimuthal mosaic distribution sharpens and additional distinct orientations appear, presumably due to a higher-order commensurability. The evolution of the azimuthal mosaic distribution with increasing temperature can be ascribed to both the NaCl thermal expansion and higher diffusion rates of NaCl on Ag(1 0 0). The best epitaxy, i.e. that with the highest selectivity of a specific azimuthal domain orientation, is achieved by growing NaCl films at low deposition rate (0.1 ML min−1) on the Ag(1 0 0) substrate at constant high temperature (450–500 K). The observations made here can probably be applied more generally to other heterogeneous interfaces and, in particular, be used to improve the quality of thin insulating films.  相似文献   

13.
Effects of growth conditions on the formation of InAs quantum dots (QDs) grown on GaAs (1 1 5)A substrate were investigated by using the reflection high-energy electron diffraction (RHEED) and photoluminescence spectroscopy (PL). An anomalous evolution of wetting layer was observed when increasing the As/In flux ratio. This is attributed to a change in the surface reconstruction. PL measurements show that QDs emission was strongly affected by the InAs deposited amount. No obvious signature of PL emission QDs appears for sample with 2.2 ML InAs coverage. Furthermore, carrier tunneling from the dots to the non-radiative centers via the inclination continuum band is found to be the dominant mechanism for the InAs amount deposition up to 4.2 MLs.  相似文献   

14.
The atomic structure of a four layer thick film of CoO on a Ag(0 0 1) substrate has been determined by comparing experimental low-energy electron diffraction (LEED) I(V) curves with multiple scattering calculations. The CoO film has been prepared using reactive evaporation of Co in an oxygen atmosphere leading to almost layer-by-layer growth. Contrary to the surface of CoO crystals an outward relaxation of the two outermost CoO layers as well as rumpling in the top layer has been found. The supposed driving force of this relaxation is the in-plane compressive stress, which results from the pseudomorphic growth of the CoO film on the Ag(0 0 1) substrate and the lattice mismatch of the two materials.  相似文献   

15.
The authors report the growth of crack-free GaN on Si(1 1 1) substrate with step-graded AlGaN intermediate layers all grown at 1120 °C. By preparing all these layers at high-temperature, we can simplify the growth proceduce and minimize the growth time. Using X-ray diffraction and transmission electron microscopy, it was found that the high-temperature step-graded AlGaN intermediate layers can effectively reduce the tensile stress on GaN epitaxial layers. Photoluminescence and Raman measurements also indicate that we can improve the crystal quality of GaN by inserting the step-graded AlGaN intermediate layers.  相似文献   

16.
In this article the performance of photodiodes made from epitaxially grown layers of p-InSb on n-type InSb substrates is reported. The effect of increasing Cd atomic weight percent on p-type carrier concentration and mobility at 77 K is also discussed. In our epitaxial growth method, a ramp cooling technique was used. Finally by improving growth parameters such as growth temperature, prior cleaning of B face (Sb) n-InSb substrates and cooling rate, adequate epitaxial layers of p-InSb on n-InSb <1 1 1> and consequently highly sensitive photodiodes have been obtained.A high detectivity photodiodes fabricated for p-InSb on n-InSb substrate by liquid phase epitaxy (LPE) was measured using optoelectronic tests and the detectivity of the diodes was compared with n-InSb on p-InSb. Several other tests such as Hall effect, thickness measurements, IV and X-ray diffraction (XRD) were also performed and morphology images will be presented in this paper.  相似文献   

17.
The effect of the germanium coverage prior to the epitaxial growth of 5 μm thick 3C-SiC on Si(100) substrates were evaluated with Atomic Force Microscopy and μ-Raman spectroscopy. The 3C-SiC layers were grown by atmospheric pressure chemical vapor deposition via a special procedure leading to layers with compressive instead of tensile stress. The Ge amount was varied from 0 up to 2 ML. The obtained results showed that the residual stress inside the layers is shifted in the compressive direction; the crystalline quality is improved with the Ge introduction but on the account of the surface roughness. These results open the route for the use of Ge-modified Si(100) as a potential substrate in order to improve the heteroepitaxial growth of 3C-SiC on silicon substrates.  相似文献   

18.
Formation of self-assembled InAs 3D islands on GaAs (1 1 0) substrate by metal organic vapor phase epitaxy has been investigated. Relatively uniform InAs islands with an average areal density of 109 cm−2are formed at 400 ° C using a thin InGaAs strain reducing (SR) layer. No island formation is observed without the SR layer. Island growth on GaAs (1 1 0) is found to require a significantly lower growth temperature compared to the more conventional growth on GaAs (1 0 0) substrates. In addition, the island height is observed to depend only weakly on the growth temperature and to be almost independent of the V/III ratio and growth rate. Low-temperature photoluminescence at 1.22 eV is obtained from the overgrown islands.  相似文献   

19.
Optical transitions in self-organized InAs quantum dots (QDs) grown on In0.52Al0.48As layer lattice matched to InP(0 0 1) substrate, have been studied by continuous wave (cw) photoluminescence (PL) and time-resolved PL. The dependence of the PL transition on excitation power and photoluminescence excitation measurements clearly shows that the multi-component cw-PL spectrum is related to emission coming from ground and related excited states of QDs with heights varying by monolayer fluctuations. While decay times measured by time-resolved PL are in the nanosecond range for the ground states, shorter decay times related to relaxation of carriers down directly to the ground state are determined for the excited states.  相似文献   

20.
InGaAsSb strain-reducing layers (SRLs) are applied to cover InAs quantum dots (QDs) grown on GaAs substrates. The compressive strain induced in InAs QDs from the GaAs is reduced due to the tensile strain induced by the InGaAsSb SRL, because the lattice constant of InGaAsSb is closer to InAs lattice constant than that of GaAs, resulting in a significant red shift of photoluminescence peaks of the InAs QDs. The emission wavelength from InAs QDs can be controlled by changing the Sb composition of the InGaAsSb SRL. The 1.5 μm band emissions were achieved in the sample with an InGaAsSb SRL whose Sb compositions were above 0.3. The calculation of the electron and the hole wave functions using the transfer matrix method indicates that the electron and the hole were localized around InAs QDs and InGaAsSb SRL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号