共查询到17条相似文献,搜索用时 46 毫秒
1.
《物理化学学报》2014,(3)
在阴离子表面活性剂十二烷基苯磺酸钠(SDBS)体系中,采用一步法制得聚苯胺/SDBS超疏水复合材料.利用场发射扫描电子显微镜(FESEM)观察产物形貌并测定其元素组成.通过傅里叶变换红外光谱仪、紫外-可见光谱仪、X射线衍射等对其结构进行表征,用视频接触角测量仪测定材料的亲疏水性.考察SDBS浓度和溶液酸度对产物形貌及疏水性能的影响,探讨疏水机理.结果表明:在pH=1-9,SDBS浓度大于0.016 mol?L-1条件下,所制备复合材料的水接触角大于150°,SDBS掺杂使得苯胺单体的转化率高达98%.两亲分子SDBS亲水磺酸基与聚苯胺主链上的亚胺基不仅存在静电引力,而且能形成磺酰胺键,聚苯胺主链间又以氢键相互连接,SDBS分子的疏水烃基有序排列朝向聚苯胺主链外侧,从而组装形成具有微纳结构的聚苯胺/SDBS超疏水复合材料.本文结果有利于更好地理解聚苯胺/SDBS超疏水性复合材料的形成机理,对超疏水材料的设计提供新思路. 相似文献
2.
以苯胺为单体, 过硫酸铵为氧化剂, 通过改变不同的掺杂剂, 采用"无模板"法合成了具有不同浸润性的聚苯胺微/纳米结构, 并得到超疏水聚苯胺微/纳米结构. 采用红外吸收光谱、 紫外-可见吸收光谱、 X射线衍射及扫描电镜对聚苯胺微/纳米结构及形貌进行了表征, 测定了聚苯胺微/纳米结构的接触角, 并通过Tafel极化曲线和电化学交流阻抗研究了不同疏水性的聚苯胺微/纳米结构在0.1 mol/L H2SO4溶液中对碳钢的腐蚀防护作用, 探讨了聚苯胺微/纳米结构的表面浸润性对腐蚀防护性能的影响. 研究结果表明, 随着聚苯胺微/纳米结构疏水性的增强, 对碳钢的腐蚀防护作用增强, 当掺杂剂为全氟辛酸时所制备的超水聚苯胺微/纳米结构表现出最佳的防腐蚀性能(η= 94.70%). 相似文献
3.
超疏水导电聚苯胺的界面聚合 总被引:1,自引:0,他引:1
采用界面聚合和无模板法相结合的方法, 以具有疏水链的全氟癸二酸(PFSEA)为掺杂剂, 通过调节苯胺单体和FeCl3氧化剂的浓度实现了聚苯胺三维微/纳米结构形貌和尺寸的可控制备. 扫描电子显微镜测量结果显示, 聚苯胺是由一维纳米纤维自组装形成的三维微球结构; 红外吸收光谱和紫外-可见吸收光谱结果表明, 聚苯胺微球为掺杂态. 室温下, 该微/纳米结构聚苯胺微球的电导率为 9.6×10-3 S/cm, 表面水接触角为161.4°, 表现出半导体特性和超疏水性. 相似文献
4.
5.
以苯胺为原料,采用原位聚合法在聚四氟乙烯(PTFE)基体上合成聚苯胺/聚四氟乙烯(PANI/PTFE)复合膜.利用光学显微镜、扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)、紫外-可见吸收光谱(UVVis)和静态水接触角测试对PANI/PTFE复合膜的形貌、结构和浸润性进行分析,并对其油包水乳液分离性能、通量和循环使用性能进行了测试.研究结果表明,PANI/PTFE复合膜仅在重力条件就能有效分离油包水乳液;而且重复数十次过滤后,PANI/PTFE复合膜仍具有良好的抗污能力和分离性能. 相似文献
6.
7.
聚苯胺/膨润土纳米复合材料的合成与表征 总被引:9,自引:0,他引:9
通过嵌入手段设计与合成同时具有某些无机和有机物双重性能的新型材料-无机/有机纳米复合材料,是科学家们关注的课题[1].Inoue等人[2]采用蒙脱土吸附苯胺单体然后电氧化的方法制备了聚苯胺/蒙脱土(Pan/Mont)复合材料,由于Mont片体的表面吸附了苯胺,所合成的为聚合物包覆的复合材料,这样在一定的程度上影响了材料的各向异性.本文采用离子交换,洗涤除去吸附在粘土颗粒表面的单体,成功地合成了非包覆的聚苯胺/膨润土壤(Ben)层状纳米复合材料,并用FTIR等方法对材料进行了表征.该材料兼有粘土的离子交换性能和聚苯胺的良好… 相似文献
8.
9.
合成聚苯胺/碳化钨复合材料及聚合机理探讨 总被引:1,自引:0,他引:1
采用在原位聚合苯胺的反应介质中分散碳化钨(WC)的方法制备了掺杂聚苯胺/碳化钨(PANI/WC)复合物,并研究了苯胺在WC表面的聚合机理.通过扫描电镜(SEM)、透射电镜(TEM)、傅立叶红外光谱(FTIR)、拉曼光谱(Raman)和X射线衍射(XRD)对复合物进行了表征.结果表明,苯胺的聚合倾向于在WC颗粒表面进行,形成了PANI包覆WC的复合材料;WC粒子与PANI大分子之间存在强的相互作用,并且复合前后WC的晶型并未发生变化,WC的存在导致红外光谱有明显的蓝移现象,复合后在3446 cm-1处的红外吸收峰变得很弱;在拉曼光谱中,代表醌环C N键的伸缩振动峰红移了9 cm-1,并且强度也有很大程度提高.说明PANI与WC之间有化学键的作用,它们之间的化学键作用发生在C N键的N原子上.聚合反应优先在WC粒子表面进行,生成PANI包覆结构,并提出了PANI/WC复合物的形成机制. 相似文献
10.
11.
12.
利用有机溶剂溶胀磺化聚苯乙烯@二氧化钛(SPS@TiO2)核壳粒子制得二氧化钛/聚苯乙烯(TiO2/PS)双面神(Janus)颗粒, 并在TiO2端进行改性, 得到墨绿色的聚苯胺/聚苯乙烯(PANi/PS) Janus颗粒. 用扫描电子显微镜(SEM)、电子能谱(EDS)、元素分析、透射电子显微镜(TEM)、红外光谱(IR)、热重分析(TGA)、固体紫外-可见分析(UV-Vis)和四探针法考察Janus颗粒组成、微结构和Janus性质. 结果表明, Janus颗粒为雪人状结构, PS端的平均粒径为228 nm, PANi端的平均粒径从TiO2的258 nm增大为295 nm; 并且在EDS谱上可以观察到N元素, 而未观察到Ti元素; 包覆的PANi的质量分数为23.7%. 掺杂后PANi/PS Janus颗粒的导电性能较好, 电导率为0.247 S/cm. 相似文献
13.
14.
将硫代硫酸钠(Na2S2O3)与氧化石墨烯(GO)的混合溶液,在酸性条件下经过一步水热反应制备还原氧化石墨烯/硫(RGO/S)复合正极材料. 实验探索了水热温度、反应时间、碳硫质量比例对材料的影响. 通过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和恒电流充放电对材料进行分析. 结果表明在180 ℃下,碳硫质量比为3:7时,水热12 h得到的RGO/S复合材料具有优异的循环性能,首次放电比容量为931 mAh·g-1,50次循环之后其比容量还保持在828.16 mAh·g-1;RGO/S复合材料的充放电库仑效率在95%以上;同时RGO/S复合材料的倍率性能相比于单质硫有很大提高. 一步水热法能够使硫分子均匀分布在石墨烯片层结构中,同时加强了石墨烯表面基团对硫分子的固定作用. 相似文献
15.
将硫代硫酸钠(Na2S2O3)与氧化石墨烯(GO)的混合溶液,在酸性条件下经过一步水热反应制备还原氧化石墨烯/硫(RGO/S)复合正极材料.实验探索了水热温度、反应时间、碳硫质量比例对材料的影响.通过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和恒电流充放电对材料进行分析.结果表明在180°C下,碳硫质量比为3:7时,水热12 h得到的RGO/S复合材料具有优异的循环性能,首次放电比容量为931 mAh?g-1,50次循环之后其比容量还保持在828.16 mAh?g-1;RGO/S复合材料的充放电库仑效率在95%以上;同时RGO/S复合材料的倍率性能相比于单质硫有很大提高.一步水热法能够使硫分子均匀分布在石墨烯片层结构中,同时加强了石墨烯表面基团对硫分子的固定作用. 相似文献
16.
聚苯胺/碳纳米纤维复合材料的制备及电容性能 总被引:1,自引:0,他引:1
采用原位聚合法制备了聚苯胺/碳纳米纤维(PANI/CNF)复合材料,用傅里叶变换红外(FT-IR)光谱、热重分析(TGA)、扫描电镜(SEM)和孔分布及比表面积测定仪研究了复合材料的表面官能团、组成、表面形貌及比表面积,并运用循环伏安(CV)法和计时电位法测试了PANI/CNF布作为电极材料的电化学性能.研究结果表明:PANI/CNF复合材料具有粗糙的毛刺结构,PANI沿碳纳米纤维均匀分布;PANI/CNF电极氧化还原反应的可逆性良好;在100mA·g-1电流密度下,当PANI含量为44.4%(w)时,复合材料比电容量高达587.1F·g-1,比能量为66.1Wh·kg-1,电流密度为800mA·g-1时比功率可达1014.2W·kg-1;在5A·g-1的电流密度下,1000次循环充放电后,复合材料的比电容量衰减28%.PANI/CNF复合材料具有良好的导电性和快速充放电能力,是一种优良的超级电容器电极材料. 相似文献
17.
二次掺杂对聚苯胺导电复合物性能的影响 总被引:3,自引:1,他引:3
研究了聚苯胺与(苯乙烯-丁二烯)三嵌段共聚物或氯碘化聚乙烯复合物在间甲酚二次掺杂前后电导率的变化(提高2个数量级),根据二次掺杂使聚苯胺复合物增强永久形变和断面形貌脆断一次掺杂使卷曲的聚苯胺链展开并通过这间的弱相互作用而自行组成导电能通路,复合物二次掺杂前后的抗张强度和伸长率变化不大,说明其主链间的弱相互作用对应力无贡献,此外,还研究了二次掺杂对复合物在中性和酸必南中电致变色活性的影响。 相似文献