首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 625 毫秒
1.
采用H2O2-Vc氧化还原体系引发半纤维素衍生物,以表面修饰的Fe3O4粒子作为磁性组分,利用接枝共聚方法制备了新型半纤维素基磁性水凝胶.分别用傅里叶变换红外(FTIR)光谱、X射线光电子能谱(XPS)和扫描电子显微镜(SEM)对水凝胶的结构及形貌进行了表征,利用X射线衍射(XRD)和振动样品磁强计(VSM)对水凝胶的晶型结构及磁性能进行了分析,发现Fe3O4粒子均匀分散在凝胶网络中,半纤维素基磁性水凝胶表现出良好的顺磁性.考察了丙烯酸/半纤维素比例、Fe3O4粒子含量及交联剂用量对水凝胶溶胀性能的影响,并探讨了该水凝胶的溶胀机理,它在pH 8缓冲溶液中的溶胀较好符合Fickian和Schott动力学模型.通过SEM和溶胀性能分析表明,随着pH值的升高水凝胶的孔径增大,水凝胶的溶胀率逐渐增大.制备的水凝胶被用于溶菌酶吸附研究,结果表明磁性凝胶的吸附量大于非磁性水凝胶,水凝胶的吸附行为符合Freundlich和Temkin等温模型.  相似文献   

2.
以辐射过氧化的表面活性剂胶束为引发中心和交联中心, 制得具有优异机械性能的聚丙烯酰胺(PAAm)水凝胶, 并通过原位化学共沉淀法向其中引入Fe3O4粒子, 得到了磁性复合水凝胶. 扫描电子显微镜(SEM)表征发现磁性粒子在凝胶中分布均匀, 其粒径约为30 nm. X射线衍射(XRD)表征证实所引入的纳米粒子为尖晶石型Fe3O4. 磁性能测试表明, PAAm/ Fe3O4复合水凝胶具有超顺磁性特征. 该复合凝胶具有较优异的机械性能, 其断裂伸长率可以达到1200%, 拉伸强度最大可达0.10 MPa. 另外, 该复合凝胶表现出良好的形变回复特性.  相似文献   

3.
Pd/Fe3O4-MCNT磁性催化剂的制备、表征及催化性能   总被引:1,自引:0,他引:1  
利用多元醇法制备了单分散Fe3O4纳米粒子修饰多壁碳纳米管(MCNT)的磁性复合材料, 并以X射线衍射(XRD)、透射电镜(TEM)和X射线能量色散谱(EDS)对碳纳米管磁性复合材料的结构和组成进行了表征. 研究发现, 通过调控Fe3O4前驱体与MCNT载体的质量比, 可以很好地控制沉积的磁性纳米粒子大小. 以碳纳米管磁性复合材料为载体, 采用多元醇法成功制备了Pd负载量为3.0% (w)的Pd/Fe3O4-MCNT磁性催化剂. 磁性质测试表明碳纳米管磁性复合材料在负载Pd前后都具有良好的超顺磁性. 以肉桂醛加氢为探针反应研究了Pd/Fe3O4-MCNT的催化性能, 结果表明该催化剂表现出良好的催化加氢性能, 在外加磁场下催化剂能与液相反应体系高效分离, 循环使用4次后, 催化性能没有明显下降, 显示了良好的循环利用性能.  相似文献   

4.
设计并合成了一种以磁性纳米粒子为核,聚合物为中间层,金属有机骨架材料为外层的三层结构磁性复合材料(Fe3O4@PAA@ZIF 8)。首先利用溶剂热法制备Fe3O4纳米粒子,然后通过蒸馏沉淀聚合法在Fe3O4纳米粒子表面包覆聚丙烯酸(PAA)层,最后通过原位沉积法在PAA外部包覆ZIF 8。在对Fe3O4@PAA@ZIF 8的组成和结构进行表征的基础上,深入研究其对孔雀石绿(MG)的吸附性能。透射电子显微镜(TEM)显示 Fe3O4@PAA@ZIF 8 具有明显的三层结构,Fe3O4的平均粒径为 117nm,PAA 层厚度约为 17 nm,ZIF 8层的厚度约为 14 nm。Fe3O4@PAA@ZIF 8对 MG 的吸附量随着 pH 的升高而增大,吸附过程符合准二阶动力学模型和 Langmuir等温吸附模型。此外,Fe3O4@PAA@ZIF 8还表现出良好的重复利用性能,8次循环利用后对MG(500 mg·L-1)的最大吸附量仍可达982 mg·g-1。  相似文献   

5.
以1-十八烯作为高沸点溶剂, 在磁性粒子表面沉积量子点获得新型的磁性荧光Fe3O4-CdSe 纳米异质结构. 首先以乙酰丙酮铁(Fe(acac)3)为前驱体, 二苯醚为溶剂, 油酸为表面活性剂和油胺(OAm)为表面活性剂兼还原剂, 通过溶剂热法制备单分散性的Fe3O4 纳米粒子. 然后以1-十八烯为高沸点溶剂, CdO 为镉源,TOP-Se为硒源, 十六胺为表面活性剂以及硬脂酸为生长促进剂和成核剂制备得到新型的Fe3O4-CdSe纳米异质结构. 通过透射电镜(TEM), 傅里叶变换红外(FTIR)光谱, X射线衍射(XRD)谱, X射线光电子能谱(XPS)分析仪, 振动样品磁强计(VSM), 紫外-可见(UV-Vis)光谱和光致发光(PL)等手段对Fe3O4-CdSe 纳米复合材料的结构和性能进行表征. 结果表明, CdSe纳米粒子成功地吸附在Fe3O4纳米粒子表面, 并沿着c轴生长, 形成了宽3.6 nm, 长分别为14.5 和32.5 nm的新型枣核状和钉子状的异质结构体. 这种新型的Fe3O4-CdSe纳米复合材料是由磁铁矿Fe3O4和六方形的CdSe棒状结构组成, 具有较好的荧光性能和超顺磁性. 随着CdSe棒长度的增加, 荧光吸收峰向长波方向移动. Fe3O4纳米粒子, 枣核状和钉子状的Fe3O4-CdSe纳米复合材料的饱和磁化强度分别是57.80, 40.76和31.10 emu·g-1.  相似文献   

6.
吴伟  贺全国  陈洪  汤建新  聂立波 《化学学报》2007,65(13):1273-1279
超声条件下, 在乙醇分散的3-氨丙基三乙氧基硅烷(APTES)功能化的磁性Fe3O4纳米粒子和四氯合金酸的混合溶液中滴加柠檬酸钠, 成功地制备了磁性Fe3O4/Au复合纳米粒子. 采用X射线粉末衍射仪(XRD)、紫外吸收可见光谱(UV-Vis)、带有电子能谱仪(EDS)的扫描电子显微镜(SEM)、透射电子显微镜(TEM)、光电子能谱(XPS)、超导量子干涉仪(SQUID)等方法, 对复合粒子的形态、结构、组成以及磁学性质进行了表征. 结果表明: 在此条件下制得的复合粒子粒径在30 nm左右, 室温下磁化强度可达63 emu/g.  相似文献   

7.
Fe3O4@SiO2@polymer复合粒子的制备及在药物控制释放中的应用   总被引:1,自引:1,他引:0  
本文通过多步反应制备了一种新型的、多层结构的、多功能的磁性纳米复合粒子, (Fe3O4@SiO2@polymer). 纳米复合粒子内核是磁性Fe3O4纳米粒子, SiO2包裹在Fe3O4上能够使其稳定分散和保护其不被腐蚀氧化; 中间层是生物相容的聚天冬氨酸(PAsp)载药层; 最外层是亲水的聚乙二醇(PEG)稳定层. 磁性纳米复合粒子各层都是生物相容的, 利用静电作用将抗癌药物阿霉素(DOX)负载在磁性纳米复合粒子中, 通过PAsp的pH响应调节了DOX的释放速率.  相似文献   

8.
不同形貌Fe3O4纳米粒子的氧化沉淀法制备与表征   总被引:10,自引:0,他引:10       下载免费PDF全文
用一种方法成功合成出了球体、四方体、八面体、不规则多面体、三角形和不规则颗粒等六种具有不同形貌的Fe3O4纳米粒子,通过扫描电子显微镜(SEM)表征了粒子形貌。试样经过X-射线衍射(XRD)表征具有尖晶石结构,且结晶良好。经震动样品磁强计(VSM)测定,各种形貌的Fe3O4纳米粒子都具有良好的磁性,其中八面体形貌的Fe3O4纳米粒子的饱和磁化强度达到86.56 emu·g-1,剩磁为10.64 emu·g-1,矫顽力为138 Oe。讨论了不同形貌的Fe3O4纳米粒子的形成机制,得出了晶核的生长环境对纳米粒子的形貌有重要影响的结论。  相似文献   

9.
制备了油酸修饰的Fe3O4纳米粒子,利用盐酸多巴胺对其表面进行氨基化改性,制得水分散性良好的Fe3O4纳米粒子,用X射线衍射、透射电镜、傅里叶变换红外光谱仪、振动样品磁强计和紫外-可见吸收光谱进行表征。随后,将氨基修饰的三磷酸腺苷(ATP)适体接枝到Fe3O4纳米粒子上,结合荧光素酶化学发光法进行ATP的定量检测,并应用于市售酸奶中乳酸菌ATP含量的检测,其灵敏度高、重现性好。各项实验结果表明所制备的Fe3O4纳米粒子是一种分散性好、易分离的载体,其粒径均一、稳定、磁性强、与适体结合性能好,拓展了Fe3O4纳米粒子在分析检测领域的应用。  相似文献   

10.
为了提高壳聚糖的多染料吸附性能并使其便于固液分离,采用共沉淀法制备了壳聚糖、磁铁矿纳米颗粒、氧化石墨烯复合磁性吸附剂(CS/Fe3O4/GO)。系统的结构表征显示,CS包覆的Fe3O4磁性纳米颗粒均匀地分布在GO的表面。CS/Fe3O4/GO具有高达42.5 emu·g-1的室温铁磁性,因此可在外加磁场中实现高效固液分离。研究表明,CS/Fe3O4/GO对亚甲基蓝(MB)、甲基橙(MO)和刚果红(CR)等多种染料具有良好的吸附性能,溶液的pH、初始浓度和吸附时间对其多染料吸附性能具有显著影响。在最佳条件下,CS/Fe3O4/GO对MB、MO和CR的吸附量分别达到210.6、258.6和308.9 mg·g-1。CS/Fe3O4/GO具有优异的循环利用性能,经5次循环后仍能保留90%以上的原始吸附量。采用吸附等温线和吸附动力学对CS/Fe3O4/GO的多染料吸附性能进行了拟合分析,并详细讨论了其吸附机理。  相似文献   

11.
在利用静电喷射一步法获得壳聚糖(CS)磁性微球(Fe3O4/CS)的基础上,对Fe3O4/CS进行高温炭化和碱活化处理获得活性磁性多孔炭球(A-Fe3O4/C),并对A-Fe3O4/C吸附水中亚甲基蓝(MB)分子的性能进行了研究。在利用扫描电子显微镜、红外吸收光谱仪、比表面分析仪对制备微球的形貌和结构进行分析的基础上,深入研究溶液pH、吸附时间、温度以及活化剂种类等因素对A-Fe3O4/C吸附性能的影响。研究结果表明,A-Fe3O4/C对MB的吸附量随着pH值的增加而增大,且经KOH活化后的A-Fe3O4/C对MB表现出较优的吸附性能。A-Fe3O4/C对MB的吸附过程符合伪二级动力学方程和Langmuir等温线模型,理论最大吸附容量可达300.6 mg·g-1。此外,A-Fe3O4/C表现出良好的重复利用性能,6次循环后对MB的去除率没有明显下降。  相似文献   

12.
在利用静电喷射一步法获得壳聚糖(CS)磁性微球(Fe3O4/CS)的基础上,对Fe3O4/CS进行高温炭化和碱活化处理获得活性磁性多孔炭球(A-Fe3O4/C),并对A-Fe3O4/C吸附水中亚甲基蓝(MB)分子的性能进行了研究。在利用扫描电子显微镜、红外吸收光谱仪、比表面分析仪对制备微球的形貌和结构进行分析的基础上,深入研究溶液pH、吸附时间、温度以及活化剂种类等因素对A-Fe3O4/C吸附性能的影响。研究结果表明,A-Fe3O4/C对MB的吸附量随着pH值的增加而增大,且经KOH活化后的A-Fe3O4/C对MB表现出较优的吸附性能。A-Fe3O4/C对MB的吸附过程符合伪二级动力学方程和Langmuir等温线模型,理论最大吸附容量可达300.6 mg·g-1。此外,A-Fe3O4/C表现出良好的重复利用性能,6次循环后对MB的去除率没有明显下降。  相似文献   

13.
The adsorption of Saccharomyces cerevisiae mandelated dehydrogenase (SCMD) protein on the surface-modified magnetic nanoparticles coated with chitosan was studied in a batch adsorption system. Functionalization of surface-modified magnetic particles was performed by the covalent binding of chitosan onto the surface of magnetic Fe3O4 nanoparticles. Characterization of these particles was carried out using FTIR spectra, transmission electron micrography (TEM), X-ray diffraction (XRD) and vibrating sample magnetometry (VSM). Magnetic measurement revealed that the magnetic Fe3O4–chitosan nanoparticles were superparamagnetic and the saturation magnetization was about 37.3 emu g−1. The adsorption capacities and rates of SCMD protein onto the magnetic Fe3O4–chitosan nanoparticles were evaluated. The adsorption capacity was influenced by pH, and it reached a maximum value around pH 8.0. The adsorption capacity increased with the increase in temperature. The adsorption isothermal data could be well interpreted by the Freundlich isotherm model. The kinetic experimental data properly correlated with the first-order kinetic model, which indicated that the reaction is the adsorption control step. The apparent adsorption activation energy was 27.62 kJ mol−1 and the first-order constant for SCMD protein was 0.01254 min−1 at 293 K.  相似文献   

14.
柠檬酸根对纳米Fe3O4颗粒的生长及性能的影响   总被引:19,自引:0,他引:19  
现代诊断学的发展使得超小超顺磁性的Fe3O4粒子在医学领域具有重要应用价值。实验中利用某些羧酸盐对铁氧化物晶粒成长的抑制作用,在共沉淀法中引入柠檬酸根,制备出平均粒径小于5 nm的Fe3O4纳米分散体系。研究了不同柠檬酸根浓度对生成粒子的大小、结晶和表面吸附情况的影响。对Fe3O4颗粒在不同条件下的磁性与胶体稳定性进行了讨论。  相似文献   

15.
免疫磁性纳米微球的制备与表征   总被引:1,自引:0,他引:1  
王斌 《化学通报》2015,78(9):847-850
成功制备了Fe3O4磁性纳米颗粒及二甲基丙烯酸乙二醇酯-甲基丙烯酸(EGDMA-MAA)共聚物包覆的Fe3O4磁性复合微球。将吲哚美辛抗体固定在复合微球表面,形成了Fe3O4(核)/聚合物-抗体(壳)的复合免疫磁性颗粒。XRD结果表明,制备的Fe3O4的晶型为反立方尖晶石型且纯度较高;TEM表征表明Fe3O4粒径较为均匀,平均粒径为12nm;磁性复合微球的平均直径为460nm。制备的Fe3O4磁性纳米颗粒和磁性复合微球有较强的磁响应强度,其饱和磁化率分别为49.16和8.38emu/g,能够满足磁性分离的要求。FT IR验证了磁性复合微球中羧基特征峰的存在,表明羧基成功连接在磁性微球上面。通过碳二亚胺/N-羟基琥珀酰亚胺(EDC/NHS)活化法将微球表面羧基活化并成功与抗吲哚美辛抗体交联。  相似文献   

16.
用改进的Hummers法制备了氧化石墨烯,用乙二胺、乙二胺与丁二胺/己二胺混溶来改性氧化石墨烯。用水热法制备了Fe3O4,并用物理混合法制备了GO/Fe3O4/有机胺的三元复合体系。用透射电镜、扫描电镜、红外光谱、热重分析、X射线衍射、VSM和XPS等对所制得的样品进行了结构表征和性能测试,研究了三元复合粒子对结晶紫染料的吸附性能及影响结晶紫染料吸附效果的因素。结果表明:所制备的Fe3O4的平均粒径约为200 nm,粒径分布均匀;复合物中GO为典型的片状结构,GO及有机胺的掺杂没有影响Fe3O4的尖晶石结构;复合物为超顺磁性,Ms为53.0 emu·g~(-1)。吸附结果表明:石墨烯/Fe3O4/有机胺的三元复合材料对结晶紫染料的最大吸附量随浓度增大而增大,而吸附结晶紫染料的移除率却随结晶紫染料浓度增大而减小,并趋向一定值;乙二胺和己二胺混溶比例为5∶1的GO/Fe3O4复合材料吸附性能最佳:结晶紫浓度为400 mg·L~(-1),最大吸附量为164.3 mg·L~(-1)。  相似文献   

17.
设计并合成了一种以磁性纳米粒子为核,聚合物为中间层,金属有机骨架材料为外层的三层结构磁性复合材料(Fe3O4@PAA@ZIF-8)。首先利用溶剂热法制备Fe3O4纳米粒子,然后通过蒸馏沉淀聚合法在Fe3O4纳米粒子表面包覆聚丙烯酸(PAA)层,最后通过原位沉积法在PAA外部包覆ZIF-8。在对Fe3O4@PAA@ZIF-8的组成和结构进行表征的基础上,深入研究其对孔雀石绿(MG)的吸附性能。透射电子显微镜(TEM)显示Fe3O4@PAA@ZIF-8具有明显的三层结构,Fe3O4的平均粒径为117nm,PAA层厚度约为17 nm,ZIF-8层的厚度约为14 nm。Fe3O4@PAA@ZIF-8对MG的吸附量随着p H的升高而增大,吸附过程符合准二阶动力学模型和Langmuir等温吸附模...  相似文献   

18.
采用三种低温溶胶-凝胶法制备了具有不同Fe3O4掺杂量的磁靶向纳米Fe3O4-TiO2复合物, 通过X射线衍射(XRD)、透射电镜(TEM)、傅里叶变换红外(FTIR)光谱、紫外-可见(UV-Vis)光谱、荧光光谱(FS)及磁性能分析等表征方法筛选出包覆均匀、分散性好、磁性能优异及光催化活性较高的纳米Fe3O4-TiO2复合物. 以四甲基偶氮唑蓝(MTT)法检测肝癌细胞(HepG2)的存活率, 考察纳米Fe3O4-TiO2复合物在外磁场作用下对HepG2 细胞的光催化杀伤效应. 结果表明: 采用方法三制备的5%(质量分数)Fe3O4-TiO2复合物具备核-壳结构, 在混悬液中分散性较好, 平均粒径约为50 nm, 具有较强的光催化活性和良好的磁响应性, 同时将纳米TiO2的光响应范围拓宽至444 nm; 在外磁场作用下, 紫外光和可见光激发纳米Fe3O4-TiO2复合物对HepG2细胞的杀伤效应差异不大, 且均强于纳米TiO2; 其杀伤效应在0-1.0 T范围内随着外磁场强度的增大而增强.  相似文献   

19.
A novel core-shell magnetic Prussian blue-coated Fe3O4 composites (Fe3O4@PB) were designed and synthesized by in-situ replication and controlled etching of iron oxide (Fe3O4) to eliminate Cd (II) from micro-polluted water. The core-shell structure was confirmed by TEM, and the composites were characterized by XRD and FTIR. The pore diameter distribution from BET measurement revealed the micropore-dominated structure of Fe3O4@PB. The effects of adsorbents dosage, pH, and co-existing ions were investigated. Batch results revealed that the Cd (II) adsorption was very fast initially and reached equilibrium after 4 h. A pH of 6 was favorable for Cd (II) adsorption on Fe3O4@PB. The adsorption rate reached 98.78% at an initial Cd (II) concentration of 100 μg/L. The adsorption kinetics indicated that the pseudo-first-order and Elovich models could best describe the Cd (II) adsorption onto Fe3O4@PB, indicating that the sorption of Cd (II) ions on the binding sites of Fe3O4@PB was the main rate-limiting step of adsorption. The adsorption isotherm well fitted the Freundlich model with a maximum capacity of 9.25 mg·g−1 of Cd (II). The adsorption of Cd (II) on the Fe3O4@PB was affected by co-existing ions, including Cu (II), Ni (II), and Zn (II), due to the competitive effect of the co-adsorption of Cd (II) with other co-existing ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号