首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
陈华  杜磊  庄奕琪  牛文娟 《物理学报》2009,58(8):5685-5692
根据存在自旋轨道耦合时基于散射理论的电流表达式和散粒噪声表达式,并利用自旋密度矩阵推导出沿自旋量子化坐标的自旋极化率表达式.解析计算了单通道的情况,发现自旋极化率和电荷流散粒噪声无关.由于多通道解析推导的困难,使用非平衡格林函数技巧,数值计算了包含自旋轨道耦合效应的纯净二维电子气的多通道情况.分别改变偏压、自旋轨道耦合系数、导体长度,研究了这三种不同条件下的自旋极化率与电荷流散粒噪声Fano因子的相关性.两者的相关性表明,相关性定量关系的建立可能为自旋极化的全电学检测提供新思路. 关键词: 散粒噪声 自旋极化 Rashba自旋轨道耦合 散射矩阵  相似文献   

2.
We explore the non-commutative (NC) effects on the energy spectrum of a two-dimensional hydrogen atom. We consider a confined particle in a central potential and study the modified energy states of the hydrogen atom in both coordinates and momenta of non-commutativity spaces. By considering the Rashba interaction, we observe that the degeneracy of states can also be removed due to the spin of the particle in the presence of NC space. We obtain the upper bounds for both coordinates and momenta versions of NC parameters by the splitting of the energy levels in the hydrogen atom with Rashba coupling. Finally, we find a connection between the NC parameters and Lorentz violation parameters with the Rashba interaction.  相似文献   

3.
We study the charge transport properties of the spin-selective Andreev reflection(SSAR)effect between a spin polarized scanning tunneling microscope(STM)tip and a Majorana zero mode(MZM).Considering both the MZM and the excited states,we calculate the conductance and the shot noise power of the noncollinear SSAR using scattering theory.We find that the excited states give rise to inside peaks.Moreover,we numerically calculate the shot noise power and the Fano factor of the SSAR effect.Our calculation shows that the shot noise power and the Fano factor are related to the angle between the spin polarization direction of the STM tip and that of the MZM,which provide additional characteristics to detect the MZM via SSAR.  相似文献   

4.
We investigate spin-dependent current and shot noise, taking into account the Rashba spin–orbit coupling (RSOC) effect in double diluted magnetic semiconductor (DMS) barrier resonant tunneling diodes. The calculation is based on an effective mass approach. The magnetization of DMS is calculated by the mean-field approximation in low magnetic field. The spin-splitting of DMS depends on the sp–d exchange interaction. We also examine the dependence of transport properties of CdTe/CdMnTe heterostructures on applied voltage and relative angle between the magnetization of two DMS layers. It is found that the RSOC has great different influence on the transport properties of tunneling electrons with spin-up and spin-down, which have different contributions to the current and the shot noise. Also, we can see that the RSOC enhances the spin polarization of the system, which makes the nanostructure a good candidate for new spin filter devices. Thus, these numerical results may shed light on the next applications of quantum multilayer systems and make them a good choice for future spintronics devices.  相似文献   

5.
We study the effect of Rashba spin-orbit coupling on the Hofstadter spectrum of a two-dimensional tight-binding electron system in a perpendicular magnetic field. We obtain the generalized coupled Harper spin-dependent equations which include the Rashba spin-orbit interaction and solve for the energy spectrum and spin polarization. We investigate the effect of spin-orbit coupling on the fractal energy spectrum and the spin polarization for some characteristic states as a function of the magnetic flux α and the spin-orbit coupling parameter. We characterize the complexity of the fractal geometry of the spin-dependent Hofstadter butterfly with the correlation dimension and show that it grows quadratically with the amplitude of the spin-orbit coupling. We study some ground state properties and the spin polarization shows a fractal-like behavior as a function of α, which is demonstrated with the exponent close to unity of the decaying power spectrum of the spin polarization. Some degree of spin localization or distribution around +1 or -1, for small spin-orbit coupling, is found with the determination of the entropy function as a function of the spin-orbit coupling. The excited states show a more extended (uniform) distribution of spin states.  相似文献   

6.
We study the full counting statistics of transport electrons through a semiconductor two-level quantum dot with Rashba spin–orbit (SO) coupling, which acts as a nonabelian gauge field and thus induces the electron transition between two levels along with the spin flip. By means of the quantum master equation approach, shot noise and skewness are obtained at finite temperature with two-body Coulomb interaction. We particularly demonstrate the crucial effect of SO coupling on the super-Poissonian fluctuation of transport electrons, in terms of which the SO coupling can be probed by the zero-frequency cumulants. While the charge currents are not sensitive to the SO coupling.  相似文献   

7.
We investigate the shot noise of electron transport through an Aharonov-Casher ring subject to the Rashba spin-orbit coupling (SOC). Analytic expressions for the coefficients of reflection and transmission are derived by using the Griffith boundary conditions. For this kind of SOC, the ballistic transport of electrons can be analyzed as two independent spin channels, and both of them have the same transmission and reflection coefficients. The dependences of shot noise and Landauer-Biittiker conductance on controllable factors, including the strength of Rashba SOC, the asymmetrical angle of lead-connection positions, the radius of the rings, and the wave vector (or energy) of the incident Fermi electrons, are explicitly described by some new combined parameters. The ways that the shot noise and conductance vary with Rashba SOC and with asymmetrical angle are demonstrated by numerical simulations, respectively. It is revealed that the shot noise reaches its maximum for the particular situation of half transmission and half reflection and zero shot noise occurs at conductance maxima.  相似文献   

8.
We study a one-dimensional wire with strong Rashba and Dresselhaus spin-orbit coupling (SOC), which supports Majorana fermions when subject to a Zeeman magnetic field and in the proximity of a superconductor. Using both analytical and numerical techniques we calculate the electronic spin texture of the Majorana end states. We find that the spin polarization of these states depends on the relative magnitude of the Rashba and Dresselhaus SOC components. Moreover, we define and calculate a local "Majorana polarization" and "Majorana density" and argue that they can be used as order parameters to characterize the topological transition between the trivial system and the system exhibiting Majorana bound modes. We find that the local Majorana polarization is correlated to the transverse spin polarization, and we propose to test the presence of Majorana fermions in a 1D system by a spin-polarized density of states measurement.  相似文献   

9.
We show how realistic charge manipulation and measurement techniques, combined with the exchange interaction, allow for the robust generation and purification of four-particle spin entangled states in electrically controlled semiconductor quantum dots. The generated states are immunized to the dominant sources of noise via a dynamical decoherence-free subspace; all additional errors are corrected by a purification protocol. This approach may find application in quantum computation, communication, and metrology.  相似文献   

10.
Addressing the feasibility of quantum communication with electrons we consider entangled spin states of electrons in a double-dot which is weakly coupled to leads. We show that the entanglement of two electrons in the double-dot can be detected in mesoscopic transport and noise measurements. In the Coulomb blockade and cotunneling regime the singlet and triplet states lead to phase-coherent current and noise contributions of opposite signs and to Aharonov-Bohm and Berry phase oscillations. These oscillations are a genuine two-particle effect and provide a direct measure of nonlocality in entangled states. We show that the ratio of zero-frequency noise to current is equal to the electron charge.  相似文献   

11.
We study the effects of a gate-controlled Rashba spin-orbit coupling to quantum spin Hall edge states in HgTe quantum wells. A uniform Rashba coupling can be employed in tuning the spin orientation of the edge states while preserving the time-reversal symmetry. We introduce a sample geometry where the Rashba coupling can be used in probing helicity by purely electrical means without requiring spin detection, application of magnetic materials or magnetic fields. In the considered setup a tilt of the spin orientation with respect to the normal of the sample leads to a reduction in the two-terminal conductance with current-voltage characteristics and temperature dependence typical of Luttinger liquid constrictions.  相似文献   

12.
On the basis of the Landauer-Büttiker scattering formalism and transfer matrix method, we investigated the spin-dependent shot noise in parabolic-well with two ferromagnetic contacts (F/PW/F). The quantum size and Rashba spin-orbit interaction are discussed simultaneously. The results indicate that the shot noise is periodic function of the parabolic-well width. The oscillation frequencies of the shot noise decrease with the increasing of the parabolic-well depth, and increase with the increasing of the Rashba spin-orbit coupling strength. The amplitude and peak to valley ratio of the shot noise are strongly dependent on the magnetization configuration of the junction.  相似文献   

13.
A Kramers pair of helical edge states in quantum spin Hall effect (QSHE) is robust against normal dephasing but not robust to spin dephasing. In our work, we provide an effective spin dephasing mechanism in the puddles of two-dimensional (2D) QSHE, which is simulated as quantum dots modeled by 2D massive Dirac Hamiltonian. We demonstrate that the spin dephasing effect can originate from the combination of the Rashba spin-orbit coupling and electron-phonon interaction, which gives rise to inelastic backscattering in edge states within the topological insulator quantum dots, although the time-reversal symmetry is preserved throughout. Finally, we discuss the tunneling between extended helical edge states and local edge states in the QSH quantum dots, which leads to backscattering in the extended edge states. These results can explain the more robust edge transport in InAs/GaSb QSH systems.  相似文献   

14.
Using the non-equilibrium Greens' function formalism we calculate the spin currents in a one-dimensional ring coupled to three leads and in the presence of perpendicular magnetic flux Φ and Rashba spin-orbit coupling. A finite bias is applied between the input lead and the other two output leads. We show that the spin-orbit coupling allows one to operate this system as a spin splitter, i.e. the output leads deliver spin-polarized currents with different orientations. We find that the spin splitter operation can be tuned at integer multiples of Φ/Φ0. Its efficiency depends not only on the value of the Rashba coupling but also on the bias applied between the input and output leads. The selected spin orientation of the output leads can be reversed by a slight change of their contact position. We discuss as well the connection between the spin splitter operation and the spectral properties of the ring.  相似文献   

15.
In this article we study the role of Rashba spin–orbit coupling and electron–phonon interaction on the electronic structure of zigzag graphene nanoribbon with different width. The total Hamiltonian of nanoribbon is written in the tight binding form and the electron–electron interaction is modeled in the Hubbard term. We used a unitary transformation to reach an effective Hamiltonian for nano ribbon in the presence of electron–phonon interaction. Our results show that small Rashba spin orbit coupling annihilates the anti-ferromagnetic phase in the zigzag edges of ribbon and the electron–phonon interaction yields small polaron formation in graphene nano ribbon. Furthermore, Rashba type spin–orbit coupling increases (decreases) the polaron formation energy for up (down) spin state.  相似文献   

16.
Based on the transfer-matrix method, the spin transport properties through a graphene-based multi-barrier nanostructure with an exchange field and Rashba spin orbit coupling (SOC), have been investigated. It is found that if Rashba SOC equals to the exchange field, the multi-barrier nanostructure is an efficient way to achieve spin rotators and spin filters. In addition, it is also found that the shot noise of a spin state can be enhanced by electrostatic potential, and plateaus of the Fano factor is formed.  相似文献   

17.
朱国宝 《中国物理 B》2012,(11):429-433
The spin Hall and spin Nernst effects in graphene are studied based on Green’s function formalism.We calculate intrinsic contributions to spin Hall and spin Nernst conductivities in the Kane-Mele model with various structures.When both intrinsic and Rashba spin-orbit interactions are present,their interplay leads to some characteristics of the dependence of spin Hall and spin Nernst conductivities on the Fermi level.When the Rashba spin-orbit interaction is smaller than intrinsic spin-orbit coupling,a weak kink in the conductance appears.The kink disappears and a divergence appears when the Rashba spin-orbit interaction enhances.When the Rashba spin-orbit interaction approaches and is stronger than intrinsic spin-orbit coupling,the divergence becomes more obvious.  相似文献   

18.
We calculate the persistent charge and spin polarization current inside a finite-width quantum ring of realistic geometry as a function of the strength of the Rashba or Dresselhaus spin-orbit interaction. The time evolution in the transient regime of the two-dimensional (2D) quantum ring connected to electrically biased semi-infinite leads is governed by a time-convolutionless non-Markovian generalized master equation. The electrons are correlated via Coulomb interaction. In addition, the ring is embedded in a photon cavity with a single mode of linearly polarized photon field, which is polarized either perpendicular or parallel to the charge transport direction. To analyze carefully the physical effects, we compare to the analytical results of the toy model of a one-dimensional (1D) ring of non-interacting electrons with spin-orbit coupling. We find a pronounced charge current dip associated with many-electron level crossings at the Aharonov-Casher phase ΔΦ = π, which can be disguised by linearly polarized light. Qualitative agreement is found for the spin polarization currents of the 1D and 2D ring. Quantitatively, however, the spin polarization currents are weaker in the more realistic 2D ring, especially for weak spin-orbit interaction, but can be considerably enhanced with the aid of a linearly polarized electromagnetic field. Specific spin polarization current symmetries relating the Dresselhaus spin-orbit interaction case to the Rashba one are found to hold for the 2D ring, which is embedded in the photon cavity.  相似文献   

19.
We analytically obtained the Schmidt decomposition of the entangled state between the pseudo spin and the true spin in graphene with Rashba spin–orbit coupling. The entangled state has the standard form of the Bell state, where the SU(2) spin symmetry is broken. These states can be explicitly expressed as the superposition of two nonorthogonal, but mirror symmetrical spin states entangled with the pseudo spin states. Because of the closely locking between the pseudo spin and the true spin, it is found that the orbit curve in the spin-polarization parameter space for the fixed equi-energy contour around Dirac points has the same shape as the δk-contour. Due to the spin–orbit coupling that cause the topological transition in the local geometry of the dispersion relation, the new equi-energy contours around the new emergent Dirac Points can be obtained by squeezing the one around the original Dirac point. The spin texture in the momentum space around the Dirac points is analyzed under the Rashba spin–orbit interaction and it is found that the orientation of the spin polarization at each crystal momentum k is independent of the Rashba coupling strength.  相似文献   

20.
We investigate the magnetocapacitance of the two-dimensional electron gas (2DEG) embedded in diluted magnetic semiconductors in the presence of Rashba spin–orbit interaction (SOI). We present calculations on the energy spectrum and density of states and show that the tunable spin–orbit coupling and the enhanced Zeeman splitting have a strong effect on the magnetocapacitance of the structure. In the presence of Rashba SOI, a typical beating pattern with well defined node-positions in the oscillating capacitance is observed. A simple relation that predicts the positions of nodes in the beating patterns is obtained. The interplay between the total Zeeman splitting (including the s–d exchange interaction) and the Rashba SOI is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号