首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solution behavior of [TCNE](.-), which forms long-living pi-[TCNE]22- dimers, is computationally studied by B3LYP and MCQDPT/CASSCF(2,2) calculations (a multiconfigurational quasi-degenerate perturbative calculation using a CASSCF(2,2) wavefunction, which properly accounts for the dispersion interaction). B3LYP calculations indicate minimum-energy [TCNE](2)(2-)(dichloromethane)(4) aggregates, a solvent where pi-[TCNE](2)(2-) dimers are spectroscopically observed. Their existence is attributed to [TCNE](.-)...solvent interactions that exceed the [TCNE](.-)...[TCNE](.-) repulsion. The lowest energy minimum at the B3LYP level corresponds to an open-shell singlet electronic structure, a metastable minimum where the shortest interanion C...C distance is 5.23 A. A slightly less stable minimum is also found for the closed-shell singlet when double-occupancy of the orbitals is imposed, but it converts into the open-shell singlet minimum when the double occupancy is relaxed. At the MCQDPT/CASSCF(2,2) level, the only minimum is for the closed-shell singlet (24.0 kcal/mol (101 kJ/mol) more stable than the dissociation products), consistent with experimental enthalpy of dimerization of [TCNE](.-) in dichloromethane solutions. It has an interanion C...C distance of 2.75 A and is in accord with the UV-vis experimental properties of the [TCNE](.-) solutions.  相似文献   

2.
The reaction of Fe(II)(C5Me5)(C5H5), FeCpCp, with percyano acceptors, A [A = C4(CN)6 (hexacyanobutadiene), TCNQF4 (perfluoro-7,7,8,8-tetracyano-p-quinodimethane), and DDQ (2,3-dichloro-5,6-dicyanobenzoquinone)], results in formation of 1:1 charge-transfer salts of [Fe(III)CpCp]*]*+[A]*- composition. With A = TCNQ (7,7,8,8-tetracyano-p-quinodimethane) a 1:2 electron-transfer salt with FeCpCp forms. With A = TCNE (tetracyanoethylene) a pair of 1:1 salts as well as a pair of 2:3 salts of [FeCpCp]2[TCNE]3.S (S = CH2Cl2, THF) have been isolated and characterized by single-crystal X-ray diffraction. [FeCpCp][TCNE] consists of parallel 1-D.D(*+)A(*-)D(*+)A(*-)D(*+)A(*-). chains, while [FeCpCp][TCNE].MeCN has a herringbone array of D(*+)A2(2-)D(*+) dimers separated by solvent molecules. Although each [TCNE](-) is disordered, the diamagnetic [TCNE]2(2-) dimer is structurally different from those observed earlier with an intradimer separation of 2.79 A. The [TCNE](-) in the 2:3 [FeCpCp]2[TCNE]3.S exists as an eclipsed diamagnetic [TCNE]2(2-) dimer with an intradimer ethylene C.C separation of 2.833 and 2.903 A for the CH2Cl2- and THF-containing materials, respectively. The bond distances and angles for all the cations are essentially equivalent, and the distances are essentially equivalent to those previously reported for [FeCp2](*+) and [FeCp2](*+) cations. The average Fe-C5H5-ring and Fe-C5Me5-ring centroid distances are 1.71 and 1.69 A, respectively, which are 0.05 A longer than reported for Fe(II)CpCp. The one-electron reduction potential for Fe(II)CpCp is 0.11 V (vs SCE). The 5 K EPR of [FeCpCp](*+)[BF4](-) exhibits an axially symmetric powder pattern with g(parallel) = 4.36 and g(perpendicular) = 1.24, and the EPR parameters are essentially identical to those reported for ferrocenium and decamethylferrocenium. The high-temperature magnetic susceptibility for polycrystalline samples of these complexes can be fit by the Curie-Weiss law, chi = C/(T - theta), with low theta values and mu(eff) values from 2.08 to 3.43 mu(B), suggesting that the polycrystalline samples measured had varying degrees of orientation. [FeCpCp][TCNE] exhibits the highest effective moment of 3.43 mu(B)/Fe and weak ferromagnetic coupling, as evidenced from the theta of 3.3 K; however, unexpectedly, it does not magnetically order above 2 K. The formation of the four phases comprising FeCpCp and TCNE emphasizes the diversity of materials that may form and the present inability to predict neither solid-state compositions nor structure types.  相似文献   

3.
A series of models for the active site (H-cluster) of the iron-only hydrogenase enzymes (Fe-only H2-ases) were prepared. Treatment of MeCN solutions of Fe2(SR)2(CO)6 with 2 equiv of Et4NCN gave [Fe2(SR)2(CN)2(CO)4](2-) compounds. IR spectra of the dicyanides feature four nu(CO) bands between 1965 and 1870 cm(-1) and two nu(CN) bands at 2077 and 2033 cm(-1). For alkyl derivatives, both diequatorial and axial-equatorial isomers were observed by NMR analysis. Also prepared were a series of dithiolate derivatives (Et4N)2[Fe2(SR)2(CN)2(CO)4], where (SR)2 = S(CH2)2S, S(CH2)3S. Reaction of Et4NCN with Fe2(S-t-Bu)2(CO)6 gave initially [Fe2(S-t-Bu)2(CN)2(CO)4](2-), which comproportionated to give [Fe2(S-t-Bu)2(CN)(CO)5](-). The mechanism of the CN(-)-for-CO substitution was probed as follows: (i) excess CN(-) with a 1:1 mixture of Fe2(SMe)2(CO)6 and Fe2(SC6H4Me)2(CO)6 gave no mixed thiolates, (ii) treatment of Fe2(S2C3H6)(CO)6 with Me3NO followed by Et4NCN gave (Et4N)[Fe2(S2C3H6)(CN)(CO)5], which is a well-behaved salt, (iii) treatment of Fe2(S2C3H6)(CO)6 with Et4NCN in the presence of excess PMe3 gave (Et4N)[Fe2(S2C3H6)(CN)(CO)4(PMe3)] much more rapidly than the reaction of PMe3 with (Et4N)[Fe2(S2C3H6)(CN)(CO)5], and (iv) a competition experiment showed that Et4NCN reacts with Fe2(S2C3H6)(CO)6 more rapidly than with (Et4N)[Fe2(S2C3H6)(CN)(CO)5]. Salts of [Fe2(SR)2(CN)2(CO)4](2-) (for (SR)2 = (SMe)2 and S2C2H4) and the monocyanides [Fe2(S2C3H6)(CN)(CO)5](-) and [Fe2(S-t-Bu)2(CN)(CO)5](-) were characterized crystallographically; in each case, the Fe-CO distances were approximately 10% shorter than the Fe-CN distances. The oxidation potentials for Fe2(S2C3H6)(CO)4L2 become milder for L = CO, followed by MeNC, PMe3, and CN(-); the range is approximately 1.3 V. In water,oxidation of [Fe2(S2C3H6)(CN)2(CO)4](2-) occurs irreversibly at -0.12 V (Ag/AgCl) and is coupled to a second oxidation.  相似文献   

4.
Synthons Tl1[TCNE]*- (1) and Tl12[TCNE]2- (2), for [TCNE]*- and [TCNE]2-, respectively, in metathesis reactions have been quantitatively prepared and characterized. The structure of 1 was solved and refined in a monoclinic unit cell at 27 degrees C [C2/c, a = 12.6966 (12) angstroms, b=7.7599 (7) angstroms, c=15.5041 (15) angstroms, beta = 96.610 (5) degrees , V= 1517.4 (2) angstroms3, Dcalcd = 2.911 gcm-3, Z=8, R1 = 0.0575, omegaR2=0.0701] and exhibits nuCN absorptions at 2,191 (s) and 2,162 (s) cm-1 consistent with metal-bound [TCNE]*-. The structure of 1 consists of a distorted square antiprismatic octacoordinate Tl1 bound to six monodentate [TCNE]*-s with TlN separations ranging from 2.901 to 3.171 angstroms averaging 3.020 angstroms, and one bidentate [TCNE]*- with TlN separations averaging 3.279 angstroms. The TlN bonding is attributed to electrostatic bonding. The [TCNE]*-s form dimerized zigzag chains with intra- and interdimer separations of 2.87 and 3.29 angstroms, respectively. The tight pi-[TCNE](2)2- dimer is diamagnetic and has the shortest intradimer [TCNE]*- distance reported. These synthons for [TCNE]*- and [TCNE]2- in metathesis reactions lead to the precipitation of, for example, TlIX (X = Cl, Br, OAc). Reaction of 1 with MnIII(porphyrin)X (X = Cl, OAc) forms the molecule-based magnets of [MnIII(porphyrin)][TCNE] composition, while the reaction of [CrI(C6H6)2]Br and (Me2N)2CC(NMe2)2Cl2, [TDAE]Cl2, with 1 forms [CrI(C6H6)2] [TCNE] and [TDAE][TCNE]2, respectively. The structure of [TDAE][TCNE]2.MeCN was solved and refined in an orthorhombic unit cell at 21 degrees C [I222, a = 10.2332(15), b = 13.341(6), c = 19.907(8) angstroms, V= 2717.7 angstroms3, Z = 4; Dcalcd = 1.216 gcm-3, R=0.083, Romega = 0.104] and exhibits upsilonCN absorptions at 2,193 (m), 2,174 (s), and 2,163 (s) cm-1 consistent with isolated [TCNE](2)2- , in contrast to the aforementioned TlI bound [TCNE](2)2-. The reaction of 2 with [TDAE]Cl2 forms [TDAE]2+[TCNE]2-.  相似文献   

5.
Cu(PPh3)3(TCNE) (TCNE = tetracyanoethylene) and 14 other examples form [TCNE]22- dimers possessing a long 2.89 +/- 0.05 A two-electron four-center (2e-/4c) C-C bond in the solid state. This bond arises from the overlap of the b2g pi* singly occupied molecular orbital (SOMO) on each [TCNE]*- fragment, forming a filled bonding orbital of b2u symmetry, and the stabilizing effect of the cation...anion interactions in the crystal that exceed the anionic repulsion. In contrast, Mn(C5H5)(CO)2(TCNE) exhibits a related, but different, [TCNE]*-...TCNE]*- motif in the solid state that lacks the 2e-/4c C-C bonding. To better understand the unusual nature of 2e-/4c C-C bonding, the genesis of the differences between their respective pi-[TCNE]*-...TCNE]*- interactions was sought. The lack of 2e-/4c C-C bond formation is attributed to the weaker radical character of the [TCNE]*- ligand, which has a total spin population of only 0.5 electron, half of that required for two S = 1/2 [TCNE]*- moieties to form a [TCNE]22- dimer. Hence, the antiferromagnetic MnII-[TCNE]*- intramolecular interaction (between the formally S = 1/2 Mn-bound [TCNE]*- and the paramagnetic Mn(II)) dominates over the intermolecular pi-[TCNE]*--[TCNE]*- spin coupling (between two S = 1/2 [TCNE]*- needed to form [TCNE]22-). Therefore, by selecting specific metal ions that can interact with sigma-[TCNE]*-, dimerization forming [TCNE]22- can be favored or disfavored.  相似文献   

6.
The structures and magnetic properties of two products that result from the reactions of [Mn(TPA)(CH3CN)2](ClO4)2, TPA=tris(2-pyridylmethyl)amine and potassium tetracyanoethylenide, KTCNE, are reported. [Mn(TPA)(TCNE)]2[mu2-(TCNE)2] (1) and [Mn(TPA)(micro4-C4(CN)8)0.5].ClO4 (2) are obtained by using two different ratios of the initial reactants. Each was intended to possess two or more cis-TCNE radical anions (TCNE*/-) as ligands. 1 is a dinuclear species that crystallizes in the triclinic system in the space group P, with a=10.4432(17), b=12.2726(16), and c=13.708(2) A; alpha=88.505(12), beta=75.560(14), and gamma=87.077(12) degrees; V=1698.9(4) A3; and Z=1 and features two metal centers each with three nearly orthogonal TCNE*/- ligands. However, the three TCNE*/- ligands are all dimerized via the formation of four-center, two-electron bonds: two bridge the two Mn(II) centers, and a third TCNE*/- ligand forms an intermolecular bond to another equivalent TCNE*/-. 2 crystallizes in the tetragonal system in the space group P42212, with a=17.170(3), b=17.170(3), and c=17.1837(6) A; V=5065.9(13) A3; and Z=8. It consists of a ribbon-like coordination polymer containing the previously observed but still relatively rare octacyanobutyl dianion. The [C4(CN)8]2- anion is derived from the dimerization of two TCNE radical anions via the formation of a new sigma bond, and each anion bridges four Mn(II) centers. Both 1 and 2 display magnetic behavior consistent with only weak antiferromagnetic coupling between the high-spin d5 Mn(II) in which the TCNE*/- are rendered diamagnetic through dimerization.  相似文献   

7.
The reaction of acrylonitrile with the C(001)-2 x 1 surface has been investigated by employing density functional cluster model calculations. The calculations revealed eight possible reaction pathways for acrylonitrile with the surface dimer. Full geometry optimized structures were obtained for all adducts, including intra- and interdimer reaction products. These results were analyzed in terms of both the total energy values and the detailed optimized geometries. We find that the reaction of acrylonitrile with the diamond (001) surface occurs primarily through its nonpolar C=C group and the intradimer [2+2](cc) product is the dominant product. All these results are in good agreement with the experimental work by Schwartz. It is noteworthy that the isomerization process plays an important role in the chemisorption process. Both intradimer [4+2] product and interdimer [2+2](cc) product can isomerize to the intradimer [2+2](cc) product. The present study shows that the isomerization between intradimer [4+2] product and intradimer [2+2](cc) product is slightly favorable over the direct path to formation of the intradimer [2+2](cc) product.  相似文献   

8.
The interaction of NO with [Fe(CN)(5)H(2)O](3)(-) (generated by aquation of the corresponding ammine complex) to produce [Fe(CN)(5)NO](3)(-) was studied by UV-vis spectrophotometry. The reaction product is the well characterized nitrosyl complex, described as a low-spin Fe(II) bound to the NO radical. The experiments were performed in the pH range 4-10, at different concentrations of NO, temperatures and pressures. The rate law was first-order in each of the reactants, with the specific complex-formation rate constant, k(f)( )()= 250 +/- 10 M(-)(1) s(-)(1) (25.4 degrees C, I = 0.1 M, pH 7.0), DeltaH(f)() = 70 +/- 1 kJ mol(-)(1), DeltaS(f)() = +34 +/- 4 J K(-)(1) mol(-)(1), and DeltaV(f)() = +17.4 +/- 0.3 cm(3) mol(-)(1). These values support a dissociative mechanism, with rate-controlling dissociation of coordinated water, and subsequent fast coordination of NO. The complex-formation process depends on pH, indicating that the initial product [Fe(CN)(5)NO](3)(-) is unstable, with a faster decomposition rate at lower pH. The decomposition process is associated with release of cyanide, further reaction of NO with [Fe(CN)(4)NO](2)(-), and formation of nitroprusside and other unknown products. The decomposition can be prevented by addition of free cyanide to the solutions, enabling a study of the dissociation process of NO from [Fe(CN)(5)NO](3)(-). Cyanide also acts as a scavenger for the [Fe(CN)(5)](3)(-) intermediate, giving [Fe(CN)(6)](4)(-) as a final product. From the first-order behavior, the dissociation rate constant was obtained as k(d) = (1.58 +/- 0.06) x 10(-)(5) s(-)(1) at 25.0 degrees C, I = 0.1 M, and pH 10.2. Activation parameters were found to be DeltaH(d)() = 106.4 +/- 0.8 kJ mol(-)(1), DeltaS(d)() = +20 +/- 2 J K(-)(1) mol(-)(1), and DeltaV(d)() = +7.1 +/- 0.2 cm(3) mol(-)(1), which are all in line with a dissociative mechanism. The low value of k(d) as compared to values for the release of other ligands L from [Fe(II)(CN)(5)L](n)()(-) suggests a moderate to strong sigma-pi interaction of NO with the iron(II) center. It is concluded that the release of NO from nitroprusside in biological media does not originate from [Fe(CN)(5)NO](3)(-) produced on reduction of nitroprusside but probably proceeds through the release of cyanide and further reactions of the [Fe(CN)(4)NO](2)(-) ion.  相似文献   

9.
Nitrosyl complexes with {Ru-NO} (6) and {Ru-NO} (7) configurations have been isolated in the framework of [Ru(trpy)(L)(NO)] ( n+ ) [trpy = 2,2':6',2'-terpyridine, L = 2-phenylimidazo[4,5- f]1,10-phenanthroline] as the perchlorate salts [ 4](ClO 4) 3 and [ 4](ClO 4) 2, respectively. Single crystals of protonated material [ 4-H (+)](ClO 4) 4.2H 2O reveal a Ru-N-O bond angle of 176.1(7) degrees and triply bonded N-O with a 1.127(9) A bond length. Structures were also determined for precursor compounds of [ 4] (3+) in the form of [Ru(trpy)(L)(Cl)](ClO 4).4.5H 2O and [Ru(trpy)(L-H)(CH 3CN)](ClO 4) 3.H 2O. In agreement with largely NO centered reduction, a sizable shift in nu(NO) frequency was observed on moving from [ 4] (3+) (1953 cm (-1)) to [ 4] (2+) (1654 cm (-1)). The Ru (II)-NO* in isolated or electrogenerated [ 4] (2+) exhibits an EPR spectrum with g 1 = 2.020, g 2 = 1.995, and g 3 = 1.884 in CH 3CN at 110 K, reflecting partial metal contribution to the singly occupied molecular orbital (SOMO); (14)N (NO) hyperfine splitting ( A 2 = 30 G) was also observed. The plot of nu(NO) versus E degrees ({RuNO} (6) --> {RuNO} (7)) for 12 analogous complexes [Ru(trpy)(L')(NO)] ( n+ ) exhibits a linear trend. The electrophilic Ru-NO (+) species [ 4] (3+) is transformed to the corresponding Ru-NO 2 (-) system in the presence of OH (-) with k = 2.02 x 10 (-4) s (-1) at 303 K. In the presence of a steady flow of dioxygen gas, the Ru (II)-NO* state in [ 4] (2+) oxidizes to [ 4] (3+) through an associatively activated pathway (Delta S++ = -190.4 J K (-1) M (-1)) with a rate constant ( k [s (-1)]) of 5.33 x 10 (-3). On irradiation with light (Xe lamp), the acetonitrile solution of paramagnetic [Ru(trpy)(L)(NO)] (2+) ([ 4] (2+)) undergoes facile photorelease of NO ( k NO = 2.0 x 10 (-1) min (-1) and t 1/2 approximately 3.5 min) with the concomitant formation of the solvate [Ru (II)(trpy)(L)(CH 3CN)] (2+) [ 2'] (2+). The photoreleased NO can be trapped as an Mb-NO adduct.  相似文献   

10.
11.
Kinetic studies of cyanide exchange on [M(CN)(4)](2-) square-planar complexes (M = Pt, Pd, and Ni) were performed as a function of pH by (13)C NMR. The [Pt(CN)(4)](2-) complex has a purely second-order rate law, with CN(-) as acting as the nucleophile, with the following kinetic parameters: (k(2)(Pt,CN))(298) = 11 +/- 1 s(-1) mol(-1) kg, DeltaH(2) (Pt,CN) = 25.1 +/- 1 kJ mol(-1), DeltaS(2) (Pt,CN) = -142 +/- 4 J mol(-1) K(-1), and DeltaV(2) (Pt,CN) = -27 +/- 2 cm(3) mol(-1). The Pd(II) metal center has the same behavior down to pH 6. The kinetic parameters are as follows: (k(2)(Pd,CN))(298) = 82 +/- 2 s(-1) mol(-1) kg, DeltaH(2) (Pd,CN) = 23.5 +/- 1 kJ mol(-1), DeltaS(2) (Pd,CN) = -129 +/- 5 J mol(-1) K(-1), and DeltaV(2) (Pd,CN) = -22 +/- 2 cm(3) mol(-1). At low pH, the tetracyanopalladate is protonated (pK(a)(Pd(4,H)) = 3.0 +/- 0.3) to form [Pd(CN)(3)HCN](-). The rate law of the cyanide exchange on the protonated complex is also purely second order, with (k(2)(PdH,CN))(298) = (4.5 +/- 1.3) x 10(3) s(-1) mol(-1) kg. [Ni(CN)(4)](2-) is involved in various equilibrium reactions, such as the formation of [Ni(CN)(5)](3-), [Ni(CN)(3)HCN](-), and [Ni(CN)(2)(HCN)(2)] complexes. Our (13)C NMR measurements have allowed us to determine that the rate constant leading to the formation of [Ni(CN)(5)](3-) is k(2)(Ni(4),CN) = (2.3 +/- 0.1) x 10(6) s(-1) mol(-1) kg when the following activation parameters are used: DeltaH(2)() (Ni,CN) = 21.6 +/- 1 kJ mol(-1), DeltaS(2) (Ni,CN) = -51 +/- 7 J mol(-1) K(-1), and DeltaV(2) (Ni,CN) = -19 +/- 2 cm(3) mol(-1). The rate constant of the back reaction is k(-2)(Ni(4),CN) = 14 x 10(6) s(-1). The rate law pertaining to [Ni(CN)(2)(HCN)(2)] was found to be second order at pH 3.8, and the value of the rate constant is (k(2)(Ni(4,2H),CN))(298) = (63 +/- 15) x10(6) s(-1) mol(-1) kg when DeltaH(2) (Ni(4,2H),CN) = 47.3 +/- 1 kJ mol(-1), DeltaS(2) (Ni(4,2H),CN) = 63 +/- 3 J mol(-1) K(-1), and DeltaV(2) (Ni(4,2H),CN) = - 6 +/- 1 cm(3) mol(-1). The cyanide-exchange rate constant on [M(CN)(4)](2-) for Pt, Pd, and Ni increases in a 1:7:200 000 ratio. This trend is modified at low pH, and the palladium becomes 400 times more reactive than the platinum because of the formation of [Pd(CN)(3)HCN](-). For all cyanide exchanges on tetracyano complexes (A mechanism) and on their protonated forms (I/I(a) mechanisms), we have always observed a pure second-order rate law: first order for the complex and first order for CN(-). The nucleophilic attack by HCN or solvation by H(2)O is at least nine or six orders of magnitude slower, respectively than is nucleophilic attack by CN(-) for Pt(II), Pd(II), and Ni(II), respectively.  相似文献   

12.
Reduction potentials of several M(2+/3+) (M = Ru, Os) octahedral complexes, namely, [M(H2O)6](2+/3+), [MCl6](4-/3-), [M(NH3)6](2+/3+), [M(en)3](2+/3+) [M(bipy)3](2+/3+), and [M(CN)6](4-/3-), were calculated using the CASSCF/CASPT2/CASSI and MRCI methods including spin-orbit coupling (SOC) by means of first-order quasi-degenerate perturbation theory. It was shown that the effect of SOC accounts for a systematic shift of approximately -70 mV in the reduction potentials of the studied ruthenium (II/III) complexes and an approximately -300 mV shift for the osmium(II/III) complexes. SOC splits the sixfold-degenerate (2)T(2g) ground electronic state (in ideal octahedral symmetry) of the M(3+) ions into the E((5/2)g) Kramers doublet and G((3/2)g) quartet, which were calculated to split by 1354-1573 cm(-1) in the Ru(3+) complexes and 4155-5061 cm(-1) in the Os(3+) complexes. It was demonstrated that this splitting represents the main contribution to the stabilization of the M(3+) ground state with respect to the closed-shell (1)A(1g) ground state in M(2+) systems. Moreover, it was shown that the accuracy of the calculated reduction potentials depends on the calculated solvation energies of both the oxidized and reduced forms. For smaller ligands, it involves explicit inclusion of the second solvation sphere into the calculations, whereas implicit solvation models yield results of sufficient accuracy for complexes with larger ligands. In such cases (e.g., [M(bipy)3](2+/3+) and its derivatives), very good agreement between the calculated (SOC-corrected) values of the reduction potentials and the available experimental values was obtained. These results led us to the conclusion that especially for Os(2+/3+) complexes, inclusion of SOC is necessary to avoid systematic errors of approximately 300 mV in the calculated reduction potentials.  相似文献   

13.
14.
Electron paramagnetic resonance (EPR) investigations were conducted on [Cu(II) (1-phenylamidino-O-n-butylurea) en (H2O)]2(2+) (1) and [Cu(II) sulphato-mono (1-phenylamidino-O-methylurea)]2 (2) respectively, in the temperature range 300-77K. Fine structure characteristics of S = 1 system, was observed in both complexes with zero field splitting of 0.0525 and 0.0225 cm(-1), respectively, suggesting the formation of dimeric complexes. The presence of the half-field signal (DeltaMs= +/-2), in the complex 1, further confirmed the formation of dimer. The temperature dependence of EPR signal intensity has given evidence for the ferromagnetic (FM) coupling between the two Cu2+ ions. The isotropic exchange interaction constants J, were evaluated from this and were found out to be approximately 57 and approximately 27 cm(-1), respectively, for the complexes 1 and 2. The photoacoustic spectra of these complexes had shown a band around 26,400 cm(-1) characteristic of metal-metal bonding giving an independent support for the existence of dimeric Cu2+ species. The high magnetic moment values at room temperature for complex 1 (2.68 microB) and complex 2 (2.00 microB), obtained from the magnetic susceptibility measurements, support the formation of ferromagnetically coupled Cu2+ dimers.  相似文献   

15.
In the search for complexes modeling the [Fe(CN)(2)(CO)(cysteinate)(2)] cores of the active centers of [NiFe] hydrogenases, the complex (NEt(4))(2)[Fe(CN)(2)(CO)('S(3)')] (4) was found ('S(3)'(2-)=bis(2-mercaptophenyl)sulfide(2-)). Starting complex for the synthesis of 4 was [Fe(CO)(2)('S(3)')](2) (1). Complex 1 formed from [Fe(CO)(3)(PhCH=CHCOMe)] and neutral 'S(3)'-H(2). Reactions of 1 with PCy(3) or DPPE (1,2-bis(diphenylphosphino)ethane) yielded diastereoselectively [Fe(CO)(2)(PCy(3))('S(3)')] (2) and [Fe(CO)(dppe)('S(3)')] (3). The diastereoselective formation of 2 and 3 is rationalized by the trans influence of the 'S(3)'(2-) thiolate and thioether S atoms which act as pi donors and pi acceptors, respectively. The trans influence of the 'S(3)'(2-) sulfur donors also rationalizes the diastereoselective formation of the C(1) symmetrical anion of 4, when 1 is treated with four equivalents of NEt(4)CN. The molecular structures of 1, 3 x 0.5 C(7)H(8), and (AsPh(4))(2)[Fe(CN)(2)(CO)('S(3)')] x acetone (4 a x C(3)H(6)O) were determined by X-ray structure analyses. Complex 4 is the first complex that models the unusual 2:1 cyano/carbonyl and dithiolate coordination of the [NiFe] hydrogenase iron site. Complex 4 can be reversibly oxidized electrochemically; chemical oxidation of 4 by [Fe(Cp)(2)PF(6)], however, led to loss of the CO ligand and yielded only products, which could not be characterized. When dissolved in solvents of increasing proton activity (from CH(3)CN to buffered H(2)O), complex 4 exhibits drastic nu(CO) blue shifts of up to 44 cm(-1), and relatively small nu(CN) red shifts of approximately 10 cm(-1). The nu(CO) frequency of 4 in H(2)O (1973 cm(-1)) is higher than that of any hydrogenase state (1952 cm(-1)). In addition, the nu(CO) frequency shift of 4 in various solvents is larger than that of [NiFe] hydrogenase in its most reduced or oxidized state. These results demonstrate that complexes modeling properly the nu(CO) frequencies of [NiFe] hydrogenase probably need a [Ni(thiolate)(2)] unit. The results also demonstrate that the nu(CO) frequency of [Fe(CN)(2)(CO)(thiolate)(2)] complexes is more significantly shifted by changing the solvent than the nu(CO) frequency of [NiFe] hydrogenases by coupled-proton and electron-transfer reactions. The "iron-wheel" complex [Fe(6)[Fe('S(3)')(2)](6)] (6) resulting as a minor by-product from the recrystallization of 2 in boiling toluene could be characterized by X-ray structure analysis.  相似文献   

16.
Under strictly anhydrous conditions, no reaction occurs between Mo(2)(O(2)CCMe(3))(4) and tetracyanoethylene, TCNE, at room temperature, but after addition of 1 equiv of water, a reaction proceeds to form [Mo(2)(O(2)CCMe(3))(3)((NC)(2)CC(CN)CONH)], 1. The compound contains a quadruple-bonded Mo(2) unit and the 2,3,3-tricyanoacrylamidate anion as a ligand (TC3A), a very unusual hydrolyzed form of TCNE. Two different solid-state structures were obtained after crystallization of 1. Crystals obtained from CH(2)Cl(2) consist of a two-dimensional network, and crystals grown from a C(6)H(6) solution form a 1-D chain motif. In both cases, the TC3A ligand acts as a polydentate ligand involving a bidentate OCN bridging unit and two CN groups. The electrochemical and spectroscopic (IR, UV/vis/near-IR, NMR, EPR) properties of 1 support the formulation in solution as a discrete 1:1 complex of the TC3A donor ligand and a Mo(2) unit with no charge transfer. The coordinated TC3A ligand exhibits redox properties similar to those of free TCNE.  相似文献   

17.
The preparation and characterization of several new cyano-ligated six-coordinate low-spin iron(III) porphyrinates are reported. The synthesis and structure of the new bis(cyanide) derivative K(222)][Fe(TMP)(CN)2] (TMP = tetramesitylporphyrinate) is described. Three mixed-ligand species of the general form [Fe(Porph)(CN)(L)], where L = 1-methylimidazole or pyridine, have also been prepared and structurally characterized. All complexes have been studied with EPR spectroscopy in frozen solution and in microcrystalline form. In some cases, especially those of the bis(cyanide) derivative above and the previously reported [Fe(TPP)(CN)2](-), there are significant differences in the EPR spectra as a result of the state change. These spectral differences can be correlated with changes in the electron configuration that are the likely result of a differing environment of the coordinated cyanide ligands; the core conformation and electronic structure of the porphyrin ligand are unlikely to play a role. All four new complexes and [Fe(TPP)(CN)2](-) have been studied by M?ssbauer spectroscopy with variable-temperature and applied magnetic-field measurements. The sign of the quadrupole splitting value has been established as negative. These measurements have allowed us to give estimates of the energy difference between the two close-lying dpi (dxz and dyz) orbitals. These splitting values range from approximately 267 cm-1 for [Fe(TPP)(CN)2](-) to approximately 614 cm(-1) for [Fe(TPP)(CN)(Py)].  相似文献   

18.
Paramagnetic diruthenium(III) complexes (acac)(2)Ru(III)(mu-OC(2)H(5))(2)Ru(III)(acac)(2) (6) and [(acac)(2)Ru(III)(mu-L)Ru(III)(acac)(2)](ClO(4))(2), [7](ClO(4))(2), were obtained via the reaction of binucleating bridging ligand, N,N,N',N'-tetra(2-pyridyl)-1,4-phenylenediamine [(NC(5)H(4))(2)-N-C(6)H(4)-N-(NC(5)H(4))(2), L] with the monomeric metal precursor unit (acac)(2)Ru(II)(CH(3)CN)(2) in ethanol under aerobic conditions. However, the reaction of L with the metal fragment Ru(II)(bpy)(2)(EtOH)(2)(2+) resulted in the corresponding [(bpy)(2)Ru(II) (mu-L) Ru(II)(bpy)(2)](ClO(4))(4), [8](ClO(4))(4). Crystal structures of L and 6 show that, in each case, the asymmetric unit consists of two independent half-molecules. The Ru-Ru distances in the two crystallographically independent molecules (F and G) of 6 are found to be 2.6448(8) and 2.6515(8) A, respectively. Variable-temperature magnetic studies suggest that the ruthenium(III) centers in 6 and [7](ClO(4))(2) are very weakly antiferromagnetically coupled, having J = -0.45 and -0.63 cm(-)(1), respectively. The g value calculated for 6 by using the van Vleck equation turned out to be only 1.11, whereas for [7](ClO(4))(2), the g value is 2.4, as expected for paramagnetic Ru(III) complexes. The paramagnetic complexes 6 and [7](2+) exhibit rhombic EPR spectra at 77 K in CHCl(3) (g(1) = 2.420, g(2) = 2.192, g(3) = 1.710 for 6 and g(1) = 2.385, g(2) = 2.177, g(3) = 1.753 for [7](2+)). This indicates that 6 must have an intermolecular magnetic interaction, in fact, an antiferromagnetic interaction, along at least one of the crystal axes. This conclusion was supported by ZINDO/1-level calculations. The complexes 6, [7](2+), and [8](4+) display closely spaced Ru(III)/Ru(II) couples with 70, 110, and 80 mV separations in potentials between the successive couples, respectively, implying weak intermetallic electrochemical coupling in their mixed-valent states. The electrochemical stability of the Ru(II) state follows the order: [7](2+) < 6 < [8](4+). The bipyridine derivative [8](4+) exhibits a strong luminescence [quantum yield (phi) = 0.18] at 600 nm in EtOH/MeOH (4:1) glass (at 77 K), with an estimated excited-state lifetime of approximately 10 micros.  相似文献   

19.
Multi-reference as well as single-reference quantum mechanical methods were adopted to study the potential energy surface along three possible surface reaction mechanisms of acrylonitrile on the Si(100)-2 x 1 surface. All three reactions occur via stepwise radical mechanisms. According to the computed potential energy surfaces, both [4+2] and [2+2](CN) cycloaddition products resulting from the reactions of surface dimers with the C[triple bond]N of acrylonitrile are expected, due to the negligible activation barriers at the surface. Another possible surface product, [2+2](CC), requires a 16.7 kcal/mol activation energy barrier. The large barrier makes this route much less favorable kinetically, even though this route produces the thermodynamically most stable products. Isomerization reactions among the surface products are very unlikely due to the predicted large activation barriers preventing thermal redistributions of the surface products. As a result, the distribution of the final surface products is kinetically controlled leading to a reinterpretation of recent experiments. An intermediate Lewis acid-base type complex appears in both the [4+2] and [2+2](CN) cycloadditions entrance channels, indicating that the surface may act as an electrophile/Lewis acid toward a strong Lewis base substrate.  相似文献   

20.
The anionic {Fe(NO)2}(9) DNIC[(NO)2Fe(C3H3N2)2](-) (2) (C3H3N2 = deprotonated imidazole) containing the deprotonated imidazole-coordinated ligands and DNICs [(NO)2Fe(C3H3N2)(SR)](-) (R = (t)Bu(3), Et(4), Ph(5)) containing the mixed deprotonated imidazole-thiolate coordinated ligands, respectively, were synthesized by thiol protonation or thiolate(s) ligand-exchange reaction. The anionic {Fe(NO)2}(9) DNICs 2- 5 were characterized by IR, UV-vis, EPR, and single-crystal X-ray diffraction. The facile transformation among the anionic {Fe(NO)2}(9) DNICs 2- 5 and [(NO)2Fe(S(t)Bu)2](-)/[(NO)2Fe(SEt)2](-)/[(NO)2Fe(SPh)2](-) was demonstrated in this systematic study. Of importance, the distinct electron-donating ability of thiolates serve to regulate the stability of the anionic {Fe(NO)2}(9) DNICs and the ligand-substitution reactions of DNICs. At 298 K, DNIC 2 exhibits the nine-line EPR signal with g = 2.027 (aN(NO) = 2.20 and aN(Im-H) = 3.15 G; Im-H = deprotonated imidazole) and DNIC 3 displays the nine-line signals with g = 2.027 (aN(NO) = 2.35 and aN(Im-H) = 4.10 G). Interestingly, the EPR spectrum of complex 4 exhibits a well-resolved 11-line pattern with g = 2.027 (aN(NO) = 2.50, aN(Im-H) = 4.10 G, and aH = 1.55 G) at 298 K. The EPR spectra (the pattern of hyperfine splitting) in combination with IR nu NO spectra (DeltanuNO = the separation of NO stretching frequencies, DeltanuNO = approximately 62 cm (-1) for 2 vs approximately 50 cm(-1) for 3- 5 vs approximately 43 cm(-1) for [(NO)2Fe(S(t)Bu)2](-)/[(NO)2Fe(SEt)2](-)/[(NO)2Fe(SPh)2](-)) may serve as an efficient tool for the discrimination of the existence of the anionic {Fe(NO)2}(9) DNICs containing the different ligations [N,N]/[N,S]/[S,S].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号