首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
2.
99Tc contamination at legacy nuclear sites is a serious and unsolved environmental issue. The selective remediation of 99TcO4? in the presence of a large excess of NO3? and SO42? from natural waste systems represents a significant scientific and technical challenge, since anions with a higher charge density are often preferentially sorbed by traditional anion‐exchange materials. We present a solution to this challenge based on a stable cationic metal‐organic framework, SCU‐102 (Ni2(tipm)3(NO3)4), which exhibits fast sorption kinetics, a large capacity (291 mg g?1), a high distribution coefficient, and, most importantly, a record‐high TcO4? uptake selectivity. This material can almost quantitatively remove TcO4? in the presence of a large excess of NO3? and SO42?. Decontamination experiments confirm that SCU‐102 represents the optimal Tc scavenger with the highest reported clean‐up efficiency, while first‐principle simulations reveal that the origin of the selectivity is the recognition of TcO4? by the hydrophobic pockets of the structure.  相似文献   

3.
While titanium‐based metal–organic frameworks (MOFs) have been widely studied for their (photo)catalytic potential, only a few TiIV MOFs have been reported owing to the high reactivity of the employed titanium precursors. The synthesis of COK‐47 is now presented, the first Ti carboxylate MOF based on sheets of TiIVO6 octahedra, which can be synthesized with a range of different linkers. COK‐47 can be synthesized as an inherently defective nanoparticulate material, rendering it a highly efficient catalyst for the oxidation of thiophenes. Its structure was determined by continuous rotation electron diffraction and studied in depth by X‐ray total scattering, EXAFS, and solid‐state NMR. Furthermore, its photoactivity was investigated by electron paramagnetic resonance and demonstrated by catalytic photodegradation of rhodamine 6G.  相似文献   

4.
5.
6.
7.
8.
Harvesting energy directly in oceans by electrochemical devices is essential for driving underwater appliances such as underwater vehicles or detectors. Owing to the extreme undersea environment, it is important but difficult to use the devices with both a high energy density and power density simultaneously. Inspired by marine organisms that have switchable energy extraction modes (aerobic respiration for long‐term living or anaerobic respiration to provide instantaneously high output power for fast movement), an auto‐switchable dual‐mode seawater energy extraction system is presented to provide high energy density and power density both by initiatively choosing different solutes in seawater as electron acceptors. With assistance from metal–organic frameworks, this device had a theoretical energy density of 3960 Wh kg?1, and a high practical power density of 100±4 mW cm?2 with exceptional stability and low cost, making practical applications in seawater to be possible.  相似文献   

9.
A metal–insulator–semiconductor (MIS) photosystem based on covalent organic framework (COF) semiconductors was designed for robust and efficient hydrogen evolution under visible‐light irradiation. A maximal H2 evolution rate of 8.42 mmol h?1 g?1 and a turnover frequency of 789.5 h?1 were achieved by using a MIS photosystem prepared by electrostatic self‐assembly of polyvinylpyrrolidone (PVP) insulator‐capped Pt nanoparticles (NPs) with the hydrophilic imine‐linked TP‐COFs having =C=O?H?N= hydrogen‐bonding groups. The hot π‐electrons in the photoexcited n‐type TP‐COF semiconductors can be efficiently extracted and tunneled to Pt NPs across an ultrathin PVP insulating layer to reduce protons to H2. Compared to the Schottky‐type counterparts, the COF‐based MIS photosystems give a 32‐fold‐enhanced carrier efficiency, attributed to the combined enhancement of photoexcitation rate, charge separation, and oxidation rate of holes accumulated in the valence band of the TP‐COF semiconductor.  相似文献   

10.
Metal–organic frameworks (MOFs) capable of mobility and manipulation are attractive materials for potential applications in targeted drug delivery, catalysis, and small‐scale machines. One way of rendering MOFs navigable is incorporating magnetically responsive nanostructures, which usually involve at least two preparation steps: the growth of the magnetic nanomaterial and its incorporation during the synthesis of the MOF crystals. Now, by using optimal combinations of salts and ligands, zeolitic imidazolate framework composite structures with ferrimagnetic behavior can be readily obtained via a one‐step synthetic procedure, that is, without the incorporation of extrinsic magnetic components. The ferrimagnetism of the composite originates from binary oxides of iron and transition metals such as cobalt. This approach exhibits similarities to the natural mineralization of iron oxide species, as is observed in ores and in biomineralization.  相似文献   

11.
12.
13.
The introduction of a symmetry‐ and size‐matching pore‐partitioning agent in the form of either a molecular ligand, such as 2,4,6‐tri(4‐pyridinyl)‐1,3,5‐triazine ( tpt ), or a metal‐complex cluster, into the hexagonal channels of MIL‐88/MOF‐235‐type (the acs net) to create pacs ‐type (partitioned acs ) crystalline porous materials is an effective strategy to develop high‐performance gas adsorbents. We have developed an integrated COF–MOF coassembly strategy as a new method for pore‐space partitioning through the coassembly of [(M3(OH)1?x(O)x(COO)6] MOF‐type and [B3O3(py)3] COF‐type trimers. With this strategy, the coordination‐driven assembly of the acs framework occurred concurrently and synergistically with the COF‐1‐type condensation of pyridine‐4‐boronic acid into a C3‐symmetric trimeric boroxine molecule. The resulting boroxine‐based pacs materials exhibited dramatically enhanced gas‐sorption properties as compared to nonpartitioned acs ‐type materials and are among the most efficient NH3‐sorption materials.  相似文献   

14.
15.
The exploitation of new and active earth‐abundant metal catalysts is critical for sustainable chemical production. Herein, we demonstrate the design of highly efficient, robust, and reusable ZnII‐bipyridine‐based metal–organic framework (MOF) catalysts for the intramolecular hydroamination of o‐alkynylanilines to indoles. Under similar conditions homogeneous catalytic systems mainly provide hydrolysate. Our results prove that MOFs support unique internal environments that can affect the direction of chemical reactions. The ZnII‐catalyzed hydroamination reaction can be conducted without additional ligands, base, or acid, and is thus a very clean reaction system with regard to its environmental impact.  相似文献   

16.
DNAzymes have been recognized as potent therapeutic agents for gene therapy, while their inefficient intracellular delivery and insufficient cofactor supply precludes their practical biological applications. Metal–organic frameworks (MOFs) have emerged as promising drug carriers without in‐depth consideration of their disassembled ingredients. Herein, we report a self‐sufficient MOF‐based chlorin e6‐modified DNAzyme (Ce6‐DNAzyme) therapeutic nanosystem for combined gene therapy and photodynamic therapy (PDT). The ZIF‐8 nanoparticles (NPs) could efficiently deliver the therapeutic DNAzyme without degradation into cancer cells. The pH‐responsive ZIF‐8 NPs disassemble with the concomitant release of the guest DNAzyme payloads and the host Zn2+ ions that serve, respectively, as messenger RNA‐targeting agent and required DNAzyme cofactors for activating gene therapy. The auxiliary photosensitizer Ce6 could produce reactive oxygen species (ROS) and provide a fluorescence signal for the imaging‐guided gene therapy/PDT.  相似文献   

17.
18.
The reduction of 2,4,6‐tri(4‐pyridyl)‐1,3,5‐triazine (TPT) with alkali metals resulted in four radical anion salts ( 1 , 2 , 4 and 5 ) and one diradical dianion salt ( 3 ). Single‐crystal X‐ray diffraction and electron paramagnetic resonance (EPR) spectroscopy reveal that 1 contains the monoradical anion TPT.? stacked in one‐dimensional (1D) with K+(18c6) and 2 can be viewed as a 1D magnetic chain of TPT.?, while 4 and 5 form radical metal‐organic frameworks (RMOFs). 1D pore passages, with a diameter of 6.0 Å, containing solvent molecules were observed in 5 . Variable‐temperature EPR measurements show that 3 has an open‐shell singlet ground state that can be excited to a triplet state, consistent with theoretical calculation. The work suggests that the direct reduction approach could lead to the formation of RMOFs.  相似文献   

19.
Developing effective synthetic strategies as well as enriching functionalities for sp2‐carbon‐linked covalent organic frameworks (COFs) still remains a challenge. Now, taking advantage of a variant of Knoevenagel condensation, a new fully conjugated COF ( g‐C34N6‐COF ) linked by unsubstituted C=C bonds was synthesized. Integrating 3,5‐dicyano‐2,4,6‐trimethylpyridine and 1,3,5‐triazine units into the molecular framework leads to the enhanced π‐electron communication and electrochemical activity. This COF shows uniform nanofibrous morphology. By assembling it with carbon nanotubes, a flexible thin‐film electrode for a micro‐supercapacitor (MSC) can be easily obtained. The resultant COF‐based MSC shows an areal capacitance of up to 15.2 mF cm?2, a high energy density of up to 7.3 mWh cm?3, and remarkable rate capability. These values are among the highest for state‐of‐the‐art MSCs. Moreover, this device exhibits excellent flexibility and integration capability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号