首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The successful conservation of gray seals has led to increased seal‐induced damage to the Atlantic salmon fisheries of the Baltic Sea. This paper addresses the conflict between the conservation of a formerly endangered species, the gray seal, and professional fishermen, whose livelihoods are affected by both seal‐induced damage and salmon fisheries management. We develop a bioeconomic model that incorporates the age structure of Atlantic salmon and gray seal populations. To determine the social optimum, we maximize the discounted net present value of the trap net fishery, taking into account the presence of seals in the form of seal‐induced losses, which we describe using a damage function. By choosing the optimal combination of fishing gear over time, we obtain the socially optimal fishing efforts, salmon stock size, and salmon catch. In addition, we study the private effects of introducing a technology subsidy aimed at mitigating the seal‐salmon conflict. The results suggest that technological adaptation would effectively reduce the cause of the conflict, while a technology subsidy encouraging such adaptation would shift the economic responsibility from individual fishermen to the broader public.  相似文献   

2.
Abstract The economics of fisheries is based heavily on describing fish populations by the surplus production model. Both economists and ecologists have different opinions on whether this approach provides an adequate biological basis for economic analysis. This study takes an age‐structured population model and shows how, under equilibrium conditions, it determines the surplus production model. The surplus production model is then used to solve an optimal feedback policy for a generic optimal harvesting problem. Next, it is assumed that the fishery manager applies this feedback policy even though the fish population actually evolves according to the age‐structured model. This framework is applied to the widow rockfish, Atlantic menhaden, and Pacific halibut fisheries. Population age‐structure contains information on future harvest possibilities. The surplus production model neglects this information and may lead to major deviations between the expected and actual outcomes especially under multiple steady states and nonlinearities.  相似文献   

3.
Abstract. Previous mathematical modeling of the population dynamics of Georges Bank Atlantic cod fishery employed discrete‐time models without age‐structure. To make use of a much wider variety of data on fisheries and fish stocks than was possible with an unstructured model, we introduce a juvenile‐adult age‐structured production exploited fishery model with a very general recruitment function. We use the age‐structured model to study the interaction between fish exploitation levels and recruitment dynamics. As case studies, we use our model results and historical fish population data from Georges Bank to investigate the impact of recent harvesting levels on the sustainability of cod fishery. We show that a constant harvesting policy with the same harvesting rate of 2007 would lead to the recovery and sustainability of Georges Bank cod fishery.  相似文献   

4.
A generic type age‐structured fishery population model consisting of two harvestable age classes is formulated. Optimal harvest rates are determined with uniform fishing mortality and perfectly selective fishing, respectively. Selectivity allows for differentiating the fishing mortality among different age classes. Sustainable yield–biomass functions are developed, and the maximum sustainable yield (MSY) solutions are found under both exploitation schemes. The gain of perfectly selective fishing over uniform (or biomass) fishing is examined under various assumptions, and it is proved that the benefit of selective harvesting increases when the harvestable fish population becomes more heterogeneous in terms of weights, or values. In contrast to the surplus production model, or Clark model, the analysis also demonstrates that MSY with different age classes is not purely a biological concept.  相似文献   

5.
ABSTRACT. . In recent years our understanding of the intricate connections between climate variability, marine and freshwater environmental conditions and the responses of fish stocks has improved considerably. With predictable relationships between the environment and stock abundance, fishery managers should be able to forecast variation in stock survival and recruitment. Such forecasts present an opportunity for increasing the economic value of fisheries and for achieving other management objectives, such as stock conservation and maintenance of population diversity. After describing a 4‐step framework for addressing the question ‘What is a forecast worth?’ in a fishery decision‐making context, we introduce the management system for Washington's coastal coho salmon (Oncorhynchus kisutch) fishery. Then we apply the 4‐step framework to estimate the value of improved run size forecasts in the annual harvest management of coho salmon in Washington State. Our principal analytical tool is a stochastic simulation model that incorporates the main characteristics of the fishery. The paper concludes with a discussion of opportunities and constraints to the use of climate‐based forecasts in fishery management on various spatial and temporal scales, and we consider the challenges associated with forecasting variations in fish stock size caused by shifts in climate and related ocean conditions.  相似文献   

6.
ABSTRACT. I trace the development of fisheries models (i.e., fish population dynamics models of species subject to fisheries) to the 21st century. The first real efforts occurred in the period 1900 1920 with the work of Baranov (the “Grandfather” of fisheries population dynamics) and the formation of the International Council for the Exploration of the Sea (ICES). The establishment of the science occurred between 1920 1960 with multi‐species modeling, age‐ and size‐structure dynamics, and production models. Fundamental work during this time was done by Ricker (the “Father” of fisheries population dynamics), Beverton and Holt (the “Prophets” of fisheries population dynamics), Chapman, Dickie, DeLury, Graham, Gulland, Leslie, Lotka and Volterra, Russell, Schaefer, and Thompson. During this time, most of the workwas deterministic and mathematical. Between 1960 and 1980, statistical methodology evolved greatly but was separate from mathematical advances for the most part. The development of statistical principles for the estimation of animal abundance was further enhanced by Arnason, Buckland, Burnham and Anderson and White, Cormack, Eberhardt, Jolly, Manly, Pollock, Ricker, Robson, and Seber, among others. Fisheries models evolved in a deterministic setting, with advances in age‐structured models (Gulland, Pope, Doubleday), surplus production models (Pella, Tomlin‐son, Schnute, Fletcher, Hilborn), growth models, bioeconomic models (C. Clark) and management control models (Hilborn, Walters). The period 1980 2000 was the Golden Age. The integration between mathematics and statistics occurred when likelihood and least squares techniques were formally combined with mathematical models of population change. The number of fisheries modelers grew exponentially during this time, resulting in a concomitant increase in publications. A major advance in the 1990s has been the development of Bayesian and time series methods, which have allowed explicit specification of uncertainty. Currently, theory allows realistic modeling of age‐ and size‐structured populations, migratory populations and harvesting strategies. These models routinely incorporate measurement error, process error (stochasticity) and time variation. But data needs often overwhelm the performance of models, and greater demands are being placed on models to answer complex questions. There has been poor communication between fisheries and ecological modelers, between fisheries researchers and statisticians, and among fisheries researchers in different geographic locales. Future models will need to deal better with habitat and spatial concerns, genetics, multispecies interactions, environmental factors, effects of harvesting on the ecosystem, model misspecification and so‐cioeconomic concerns. Meta‐analysis, retrospective analysis and operating models are some modern approaches for dealing with uncertainty and providing for sustainable fisheries. However, I fear that current attacks on single‐species models and management may result in rejection of these advances and an attempt to substitute a less scientific approach.  相似文献   

7.
ABSTRACT. The excessive and unsustainable exploitation of our marine resources has led to the promotion of marine reserves as a fisheries management tool. Marine reserves, areas in which fishing is restricted or prohibited, can offer opportunities for the recovery of exploited stock and fishery enhancement. In this paper we examine the contribution of fully protected tropical marine reserves to fishery enhancement by modeling marine reserve‐fishery linkages. The consequences of reserve establishment on the long‐run equilibrium fish biomass and fishery catch levels are evaluated. In contrast to earlier models this study highlights the roles of both adult (and juvenile) fish migration and larval dispersal between the reserve and fishing grounds by employing a spawner‐recruit model. Uniform larval dispersal, uniform larval retention and complete larval retention combined with zero, moderate and high fish migration scenarios are analyzed in turn. The numerical simulations are based on Mombasa Marine National Park, Kenya, a fully protected coral reef marine reserve comprising approximately 30% of former fishing grounds. Simulation results suggest that the establishment of a fully protected marine reserve will always lead to an increase in total fish biomass. If the fishery is moderately to heavily exploited, total fishery catch will be greater with the reserve in all scenarios of fish and larval movement. If the fishery faces low levels of exploitation, catches can be optimized without a reserve but with controlled fishing effort. With high fish migration from the reserve, catches are optimized with the reserve. The optimal area of the marine reserve depends on the exploitation rate in the neighboring fishing grounds. For example, if exploitation is maintained at 40%, the ‘optimal’ reserve size would be 10%. If the rate increases to 50%, then the reserve needs to be 30% of the management area in order to maximize catches. However, even in lower exploitation fisheries (below 40%), a small reserve (up to 20%) provides significantly higher gains in fish biomass than losses in catch. Marine reserves are a valuable fisheries management tool. To achieve maximum fishery benefits they should be complemented by fishing effort controls.  相似文献   

8.
ABSTRACT. Many anadromous salmonid stocks in the Pacific Northwest are at their lowest recorded levels, which has raised questions regarding their long‐term persistence under current conditions. There are a number of factors, such as freshwater spawning and rearing habitat, that could potentially influence their numbers. Therefore, we used the latest advances in information‐theoretic methods in a two‐stage modeling process to investigate relationships between landscape‐level habitat attributes and maximum recruitment of 25 index stocks of chinook salmon (Onocorhynchus tshawy‐tscha) in the Columbia River basin. Our first‐stage model selection results indicated that the Ricker‐type, stock recruitment model with a constant Ricker a, i.e., recruits‐per‐spawner at low numbers of fish) across stocks was the only plausible one given these data, which contrasted with previous unpublished findings. Our second‐stage results revealed that maximum recruitment of chinook salmon had a strongly negative relationship with percentage of surrounding subwatersheds categorized as predominantly containing U.S. Forest Service and private moderate‐high impact managed forest. That is, our model predicted that average maximum recruitment of chinook salmon would decrease by at least 247 fish for every increase of 33% in surrounding subwatersheds categorized as predominantly containing U.S. Forest Service and privately managed forest. Conversely, mean annual air temperature had a positive relationship with salmon maximum recruitment, with an average increase of at least 179 fish for every increase in 2°C mean annual air temperature.  相似文献   

9.
The proliferation of double‐crested cormorants (DCCOs; Phalacrocorax auritus) in North America has raised concerns over their potential negative impacts on game, cultured and forage fishes, island and terrestrial resources, and other colonial water birds, leading to increased public demands to reduce their abundance. By combining fish surplus production and bird functional feeding response models, we developed a deterministic predictive model representing bird–fish interactions to inform an adaptive management process for the control of DCCOs in multiple colonies in Michigan. Comparisons of model predictions with observations of changes in DCCO numbers under management measures implemented from 2004 to 2012 suggested that our relatively simple model was able to accurately reconstruct past DCCO population dynamics. These comparisons helped discriminate among alternative parameterizations of demographic processes that were poorly known, especially site fidelity. Using sensitivity analysis, we also identified remaining critical uncertainties (mainly in the spatial distributions of fish vs. DCCO feeding areas) that can be used to prioritize future research and monitoring needs. Model forecasts suggested that continuation of existing control efforts would be sufficient to achieve long‐term DCCO control targets in Michigan and that DCCO control may be necessary to achieve management goals for some DCCO‐impacted fisheries in the state. Finally, our model can be extended by accounting for parametric or ecological uncertainty and including more complex assumptions on DCCO–fish interactions as part of the adaptive management process.  相似文献   

10.
A 19-cohort bioeconomic model is developed for the southern bluefin tuna fishery. The fish are long-lived and highly migratory. They are harvested as juveniles by Australia and Japan in Australian waters, and as adults by Japan on the high seas. The potential for conflict between Australian and Japanese fleets therefore exists in the exploitation of the fishery. The model is used to compare Japanese and Australian social rents and harvest levels through time under joint maximization, and under duopoly.  相似文献   

11.
Research and management actions are reviewed with respect to demersal fisheries of the Mediterranean since the Second World War, as reflected in the activities of the General Fisheries Council for the Mediterranean, (GFCM). The scientific background to the priority concern expressed for minimum size limits in the 1960's and 1970's is discussed, and in particular, the mesh selectivity experiments that formed the basis for yield per recruit calculations, with respect to the trawl fishery. More recent considerations, changing our perception of the appropriateness of size at first capture of demersal fish as a management tool in trawl fisheries, are reviewed. It is concluded that for multispecies fisheries where the first priority for fishing effort control is not respected, size limits based on size at maturity, rather than yield per recruit criteria, are more feasible, but that changes in mesh size need to take into account subsequent changes in equity between inshore and offshore fleets, and changes in species composition and areas of distribution during the life history. They also need to consider the high landed value of small fish in many Mediterranean fisheries. Alternative, or supplementary, measures to mesh size regulation that affect capture of small fish are also reviewed, including seasonal closures, closed areas, bans on trawling inshore, and regulations on minimum size at sale. A range of problems to be considered prior to deciding on an increase in mesh size are reviewed, including changes in total effort exerted, changes in increases in fishing power (and especially the impacts on the spawning stock), changes in discard rate, “meshing” of small fish, and indirect mortality during fishing. A strategy for introducing new mesh sizes is suggested, with emphasis, where possible, on the experimental approach, and on supplementary measures to control fishing effort. The paper concludes by considering an alternative paradigm to minimum size regulation for demersal fisheries management; namely, the exploitation of juvenile fish, with provision for escapement of a small proportion of large, mature fish offshore, for which exploitation rate declines and remains low. It is suggested that this strategy may be, de facto, the one prevailing in the small mesh size inshore trawl fishery prior to development of offshore fisheries. The implications of this possibility have to be considered seriously if high effort levels are to be maintained while effective size limits are raised.  相似文献   

12.
Abstract Population features inferred from single‐species, age‐structured models are compared to those inferred from a multispecies, age‐structured model that includes predator‐prey interactions among three commercially harvested fish species—walleye pollock, Atka mackerel, and Pacific cod—on the Aleutian Shelf, Alaska. The multispecies framework treats the single‐species models and data as a special case of the multispecies model and data. The same data from fisheries and surveys are used to estimate model parameters for both single‐species and multispecies configurations of the model. Additionally, data from stomach samples and predator rations are used to estimate the parameters of the multispecies model. One form of the feeding functional response, predator pre‐emption, was selected using AIC from seven alternative models for how the predation rate changes with the densities of prey and possibly other predators. Differences in estimated population dynamics and productivity between the multispecies and single‐species models were observed. The multispecies model estimated lower mackerel population sizes from 1964–2003 than the single‐species model, while the spawning biomass of pollock was estimated to have declined more than three times faster since 1964 by the multispecies model. The variances around the estimates of spawning biomass were smaller for mackerel and larger for pollock in the multispecies model compared to the single‐species model.  相似文献   

13.
Ecosystem externalities arise when one use of an ecosystem affects its other uses through the production functions of the ecosystem. We use simulations with a size‐spectrum ecosystem model to investigate the ecosystem externality created by fishing of multiple species. The model is based upon general ecological principles and is calibrated to the North Sea. Two fleets are considered: a “forage fish” fleet targeting species that mature at small sizes and a “large fish” fleet targeting large piscivorous species. Based on the marginal analysis of the present value of the rent, we develop a benefit indicator that explicitly divides the consequences of fishing into internal and external benefits. This analysis demonstrates that the forage fish fleet has a notable economic impact on the large fish fleet, but the reverse is not true. The impact can be either negative or positive, which entails that for optimal economic exploitation, the forage fishery has to be adjusted according to the large fish fishery. With the present large fish fishery in the North Sea, the two fisheries are well adjusted; however, the present combined exploitation level is too high to achieve optimal economic rents.  相似文献   

14.
Abstract In this paper, a numerical model is developed for analyzing the role of species life history and age structure for the optimal management of a commercial resident species that is exposed to an invasive species. It is shown that reproduction and mortality characteristics of both species ands age structure of the invader at the time of invasion are important for the costs of invasions when the invader and resident species compete for scarce resources. Commercially harvested species with low juvenile survival and high reproduction are found to be economically more robust against invasions. Species with these life‐history traits are also the most damaging as invaders. Properties of the harvesting cost function and the discount rate are shown to be of importance for the development of the invader population over time. Hence, it is possible to identify specific combinations of life‐history characteristics and economic conditions under which invasions cause particularly large economic damage.  相似文献   

15.
Biologic characteristics of schooling fish species explain why the rates of harvesting in pelagic fisheries are not proportional to the existent stock size and may exhibit no variation between the periods of fish abundance and scarcity. Therefore, the stock‐dependent nonlinearities in catchability must be reflected in the design of flexible fishing policies, which target the sustainable exploitation of this important natural resource. In this study, such nonlinearities are expressed through eventual variability of the “catch‐to‐stock” parameter that measures the sensitivity of an additional catch yield to marginal changes in the fish‐stock level. Using the optimal control modeling framework, we establish that each value of the “catch‐to‐stock” parameter generates a unique steady‐state size of the fish stock and the latter engenders an optimal fishing policy that can be sustained as long as the “catch‐to‐stock” parameter remains unchanged. We also prove the continuous dependence of the steady‐state stock and underlying fishing policy upon the mentioned “catch‐to‐stock” parameter and then focus on the analysis of the equilibrium responses to changes in this parameter induced by external perturbations. Recommendations for Resource Managers
  • Marginal catches of pelagic fish stocks do not react in a linear way to changes in existing stock level, and the latter is captured in our model by the “catch‐to‐stock” parameter . Each observable value of engenders a unique steady‐state stock size that defines an optimal fishing policy, which can be sustained as long as remains unchanged.
  • The ability of fishery managers to detect variations in the levels of hyperstability expressed by the “catch‐to‐stock” parameter may help them to anticipate new equilibrium responses in stock evolution and to make timely adjustments in the fishing policy.
  • Plausible estimations of the “catch‐to‐stock” parameter , as well as detection of its possible alterations, can be carried out within the framework of Management Strategy Evaluation (MSE) approach where different data collected inside and outside the fishery are contrasted via the validation of a relatively simple decision‐making model (presented in this paper) coupled with other “operation models” of higher complexity.
  • If the “catch‐to‐stock” parameter cannot be reasonably assessed (), the fishery managers may rely upon the lower bound of stationary stock size, which depends on economic and biological factors (such as the present and future economic values of the exploited fish stock, its marginal productivity, and underlying dynamics of biological growth).
  相似文献   

16.
Abstract The paper demonstrates four general mechanisms that may affect economically valuable species when exposed to biological invasion. We distinguish between an ecological level effect and an ecological growth effect. In addition, we present an economic quantity effect working through demand. Finally, we suggest that there is an economic quality effect that reflects the possibility that invasions affect the harvesting agents directly through demand‐side forces. For example, this may occur because the state of the original species or the ecosystem is altered. We depart from the existing literature by revealing ecological and economic forces that explain why different agents may lack incentives to control invasions. The theoretical model is illustrated by the case where escaped farmed salmon (EFS) influence wild Atlantic salmon fisheries.  相似文献   

17.
Abstract Marine protected areas (MPAs), used increasingly as a tool for conservation of ocean and coastal environments, typically interact with fisheries. Indeed, implementation of an MPA in a coastal region will likely affect fishing communities along that coast but to differing degrees depending on their location relative to the MPA. The resulting creation of “winners” and “losers” has implications for the acceptance and long‐term viability of the MPA. This paper develops a spatially explicit bioeconomic simulation model to assess the distributional implications resulting from creation of a no‐take MPA. The key assumption is that this results in certain fishers being displaced from the MPA to new fishing locations, leading to decreased fishing time and increased costs. Is it possible for those being displaced to end up as “winners” in the fishery? Analysis of the model indicates that such an outcome can occur in certain circumstances, notably if the biological effects of the MPA produce (i) improved ecosystem health inside the MPA, such that fish stock carrying capacity increases; or (ii) to some extent, high fish stock migration rates between neighboring areas. The results indicate that in creating MPAs, careful attention to their design is needed in order to deal with corresponding distributional impacts on fishing communities.  相似文献   

18.
We study interactions between fishery and aquaculture using a 3D generalized Lotka–Volterra model, where we assume that the aquaculture production may affect the growth rate in the fish stock and the productivity in harvesting. In addition, input demands from both marine industries may result in effort competition. We identify conditions for the coexistence of a unique equilibrium state inside the first octant of the phase space and equilibrium states on its boundary. Conditions for stability and instability of these states are also given, thus showing the possibility of having bistability. The equilibrium point inside the first octant is stable if the growth impact on fishery from sea farming is below the potential productivity in harvesting. In the complementary case, we have an unstable interior equilibrium, and we may then end up in stable equilibrium states on the boundary, where either the fishery or the aquaculture is wiped out. Recommendations for Resource Managers
  • More empirical and theoretical research is needed to reveal types of interrelations between fisheries and aquaculture, and their importance for long run stability between the sectors.
  • When designing policies for the aquaculture industries, managers should in particular be aware of possible long‐term harmful effects from aquaculture to fisheries.
  • Increased areas for sea farming reduce the relative profitability of the fishery, and if the area increases above a certain level, this could wipe out the fishery.
  相似文献   

19.
Abstract Fishing leads to truncation of a population's age and size structure. However, large‐sized fish are usually more valuable per unit weight than small ones. Nevertheless, these size‐related factors have mostly been ignored in bioeconomic modeling. Here, we present a simple extension to the Gordon–Schaefer model that accounts for variations in mean individual catch weight, and derive the feedback rule for optimal harvest in this setting. As the Gordon–Schaefer model has no population structure, size effects have to be accounted for indirectly. Here we assume a simple negative relationship between fishing effort and mean individual weight, and a positive relationship between mean catch weight and price. The aim is to emulate alterations of size structure in fish populations due to fishing and the influence of size on price per weight unit and eventually, net revenues. This demonstrates, on a general level, how such size‐dependent effects change the patterns of optimal harvest paths and sustainable revenue in single fish stocks. The model shows clear shifts toward lower levels of optimal effort and yield compared to classical models without size effects. This suggests that ignoring body size could lead to misleading assumptions and policies, potentially causing rent dissipation and suboptimal utilization of renewable resources.  相似文献   

20.
Abstract This paper examines the question of optimal harvesting time in a size‐heterogeneous farmed aquatic population, using a model reflecting the effect of population density on both overall mortality rate and individual growth. This analysis enables an optimal harvesting rule to be deduced. The results obtained are applied to shrimp culture in recirculation systems in Mexico. Numerical solutions are derived for different production scenarios. Assuming identical culture conditions, results are also obtained under the hypothesis of homogeneous population growth, the view traditionally taken in the relevant economic literature. The optimal harvesting times calculated tend to decrease with higher densities, although this rule fails under the size‐heterogeneous population model. In general, optimal harvesting times are overestimated when size‐homogeneity in the culture is assumed. Our analysis reveals that management predictions are significantly mistaken if the size‐heterogeneity phenomenon is not taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号