首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 537 毫秒
1.
Three title compounds 4a—4c have been synthesized by the cyclodehydration of 1’-benzylidine-4’-(3β-substituted-5α-cholestane-6-yl)thiosemicarbazones 2a—2c with thioglycolic acid followed by the treatment with cold conc. H2SO4 in dioxane. The compounds 2a—2c were prepared by condensation of 3β-substituted-5α-cholestan- 6-one-thiosemicarbazones 1a—1c with benzaldehyde. These thiosemicarbazones 1a—1c were obtained by the reaction of corresponding 3β-substituted-5α-cholestan-6-ones with thiosemicarbazide in the presence of few drops of conc. HCl in methanol. The structures of the products have been established on the basis of their elemental, analytical and spectral data.  相似文献   

2.
The (3R*,3′R*) configuration of the title compound, C18H16N2S2, (I), has been unambiguously elucidated by X‐­ray analysis. Mol­ecules of (I) have C2 symmetry to a good approximation and a strongly folded shape. The interplanar angle between the two halves of a mol­ecule is 67.11 (6)°.  相似文献   

3.
The title compound, C58H64S8, has been prepared by Pd‐catalysed direct C—H arylation of tetrathienonaphthalene (TTN) with 5‐hexyl‐2‐iodothiophene and recrystallized by slow evaporation from dichloromethane. The crystal structure shows a completely planar geometry of the TTN core, crystallizing in the monoclinic space group P21/c. The structure consists of slipped π‐stacks and the interfacial distance between the mean planes of the TTN cores is 3.456 (5) Å, which is slightly larger than that of the comparable derivative of tetrathienoanthracene (TTA) with 2‐hexylthiophene groups. The packing in the two structures is greatly influenced by both the aromatic core of the structure and the alkyl side chains.  相似文献   

4.
The conformational features of the title compound, C28H44S6, are compared with previously reported analogous macrocycles. The type of substituent affects considerably the conformation of the macrocycle. A 1H NMR titration of the title compound with AgBF4 indicated the formation of the 1:1 complex, which was not crystallized.  相似文献   

5.
The title compound, methyl (2aS,3R,5R,5aS,6S,6aS,8R,9aS,10aR,10bR,10cS)‐8‐(3‐furyl)‐2a,4,5,5a,6,6a,8,9,9a,10a,10b,10c‐dodeca­hydro‐3‐hydroxy‐2a,5a,6a,7‐tetra­methyl‐5‐(3‐methylbut‐2‐enoyl­oxy)‐2H,3H‐cyclo­penta­[4′,5′]­furo­[2′,3′:6,5]benzo[cd]­isobenzo­furan‐6‐acetate, C32H42O8, was isolated from uncrushed green leaves of Azadirachta indica A. Juss (neem) and has been found to possess antifeedant activity against Spodptera litura. The conformations of the functional groups are similar to those of 3‐des­acetyl­salannin, which was isolated from neem kernels. The mol­ecules are linked into chains by intermolecular O—H?O hydrogen bonds.  相似文献   

6.
A series of novel 3′‐(alkyl(hydroxy)amino)‐2′‐fluoronucleoside analogs were prepared via conjugate addition of N‐methylhydroxylamine to various 2‐fluorobutenolides. The adducts 13a and 16 were obtained as single isomers under absolute control of stereochemistry. The crucial N‐demethylation of 23 – 25 was readily achieved by means of DDQ oxidation, followed by nitrone/oxime exchange reaction. By this procedure, a variety of alkyl groups could be efficiently introduced at the 3′‐N‐atom of the nucleoside analogs, some of which might display potentially interesting anti‐HIV properties.  相似文献   

7.
The title compound, [Mn(C14H8O4)(C12H12N2)]n, with a novel three‐dimensional framework, has been prepared by a hydro­thermal reaction at 433 K. Each Mn atom lies on a twofold axis in a slightly distorted octahedral geometry, coordinated by two N atoms from two benzidine ligands and four O atoms from three symmetry‐related biphenyl‐2,2′‐dicarboxylate (bpdc) ligands. The benzidine ligands lie about inversion centres and the bpdc ligands about twofold axes. Each bpdc ligand is bonded to three Mn ions to form a continuous chain of metal ions. The bpdc ligands are accommodated in a series of distorted holes resembling hexagonal prisms.  相似文献   

8.
A novel aromatic diamine monomer, 3,3′‐diisopropyl‐4,4′‐diaminodiphenyl‐3′′,4′′‐difluorophenylmethane (PAFM), was successfully synthesized by coupling of 2‐isopropylaniline and 3,4‐difluorobenzaldehyde. The aromatic diamine was adopted to synthesize a series of fluorinated polyimides by polycondensation with various dianhydrides: pyromellitic dianhydride (PMDA), 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐oxydiphthalic anhydride (ODPA) and 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA) via the conventional one‐step method. These polyimides presented excellent solubility in common organic solvents, such as N,N‐dimethylformamide (DMF), N,N‐dimethyl acetamide (DMAc), dimethyl sulfoxide (DMSO), N‐methyl‐2‐pyrrolidone (NMP), chloroform (CHCl3), tetrahydrofuran (THF) and so on. The glass transition temperatures (Tg) of fluorinated polyimides were in the range of 260–306°C and the temperature at 10% weight loss in the range of 474–502°C. Their films showed the cut‐off wavelengths of 330–361 nm and higher than 80% transparency in a wavelength range of 385–463 nm. Moreover, polymer films exhibited low dielectric properties in the range of 2.76–2.96 at 1 MHz, as well as prominent mechanical properties with tensile strengths of 66.7–97.4 MPa, a tensile modulus of 1.7–2.1 GPa and elongation at break of 7.2%–12.9%. The polymer films also showed outstanding hydrophobicity with the contact angle in the range of 91.2°–97.9°.  相似文献   

9.
The title compound, [Pd2(C4H13N3)2(C14H16N2)](NO3)4, comprises discrete tetracationic dumbbell‐type dinuclear complex molecules and noncoordinating nitrate anions. Two Pd(dien)2+ moieties (dien is diethylenetriamine) are joined by the rigid linear exo‐bidentate bridging 2,2′,6,6′‐tetramethyl‐4,4′‐bipyridine ligand to form the dinuclear complex, which lies across a centre of inversion in the space group P21/n, so that the rings in the 2,2′,6,6′‐tetramethyl‐4,4′‐bipyridine bridging ligand are parallel. In the crystal, the primary and secondary amino groups of the dien ligand act as hydrogen‐bond donors towards the nitrate anions to form a three‐dimensional hydrogen‐bond network.  相似文献   

10.
The structure of the title compound, 4‐allyl‐2‐methoxy‐6‐[(4‐nitrophenyl)diazenyl]phenyl benzoate, C23H19N3O5, displays the characteristic features of azobenzene derivatives. The azobenzene moiety of the molecule has a trans configuration and in this moiety, average C—N and N=N bond lengths are 1.441 (3) and 1.241 (3) Å, respectively.  相似文献   

11.
The structures of new oxaindane spiropyrans derived from 7‐hydroxy‐3′,3′‐dimethyl‐3′H‐spiro[chromene‐2,1′‐isobenzofuran]‐8‐carbaldehyde (SP1), namely N‐benzyl‐2‐[(7‐hydroxy‐3′,3′‐dimethyl‐3′H‐spiro[chromene‐2,1′‐isobenzofuran]‐8‐yl)methylidene]hydrazinecarbothioamide, C27H25N3O3S, (I), at 120 (2) K, and N′‐[(7‐hydroxy‐3′,3′‐dimethyl‐3′H‐spiro[chromene‐2,1′‐isobenzofuran]‐8‐yl)methylidene]‐4‐methylbenzohydrazide acetone monosolvate, C27H24N2O4·C3H6O, (II), at 100 (2) K, are reported. The photochromically active Cspiro—O bond length in (I) is close to that in the parent compound (SP1), and in (II) it is shorter. In (I), centrosymmetric pairs of molecules are bound by two equivalent N—H...S hydrogen bonds, forming an eight‐membered ring with two donors and two acceptors.  相似文献   

12.
New 5′‐acetyl‐3′‐1,3,4‐thiadiazoliminothymidines 11, 14 were prepared, via spontaneous rearrangments, by cycloaddition of 5′‐acetyl‐3′‐deoxy‐3′‐isothiocyanatothymidine 9 with 1‐aza‐2‐azoniaallene hexachloantimonates. Similary, 3′‐cyano analogue 19 was reacted with the same cumulenes to furnish 3′‐1,2,4‐triazolo‐thymidines 22, 24 , and 26 . Deblocking of the acylated products afforded the free nucleosides. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:298–303, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10146  相似文献   

13.
In the title compound, [TbCl(C27H35N3)2(H2O)](ClO4)2·2C2H6O, the TbIII ion has a coordination number of eight, composed of two tridentate substituted‐ter­pyridine ligands, a water mol­ecule and a bound Cl? anion. The first coordination shell can be described as a distorted bicapped trigonal prism. The dihedral angles between pyridine rings belonging to the same tpy ligand range from 5.2 (5) to 16.8 (5)°.  相似文献   

14.
The two almost perfectly planar imidazole rings in the title compound, C8H8N6O4·H2O, make a dihedral angle of 63.01 (10)°. The water mol­ecule acts as a double donor and double acceptor of strong and linear hydrogen bonds, including an exceptionally short C—H⋯O bond. These bonds create a tight three‐dimensional structure and are probably responsible for the relatively high melting point of the compound.  相似文献   

15.
In the crystal structures of four thiophene derivatives, (E)‐3′‐[2‐(anthracen‐9‐yl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C28H18S3, (E)‐3′‐[2‐(1‐pyrenyl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C30H18S3, (E)‐3′‐[2‐(3,4‐dimethoxyphenyl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C22H18O2S3, and (E,E)‐1,4‐bis[2‐(2,2′:5′,2′′‐terthiophen‐3′‐yl)ethenyl]‐2,5‐dimethoxybenzene, C36H26O2S6, at least one of the terminal thiophene rings is disordered and the disorder is of the flip type. The terthiophene fragments are far from being coplanar, contrary to terthiophene itself. The central C—C=C—C fragments are almost planar but the bond lengths suggest slight delocalization within this fragment. The crystal packing is determined by van der Waals interactions and some weak, relatively short, C—H...S and C—H...π directional contacts.  相似文献   

16.
The title copper complex, [Cu(H2P2O7)(C15H11N3)]2·4.5H2O, consists of two very similar independent Cu(Tpy)H2P2O7 monomeric units (Tpy is 2,2′:6′,2′′‐terpyridine) plus four and a half water molecules of hydration, some of which are disordered. Tpy units bind through the usual triple bite via their N atoms, and the H2P2O72− anions coordinate through two O atoms from two different phosphate units. Each independent CuN3O2 chromophore can be described as a slightly deformed square pyramid, with one of them having a sixth, semicoordinated, O atom from a centrosymmetrically related CuN3O2 unit in a weakly bound second apical position suggesting an octahedral environment for the cation and weak dimerization of the molecule. The two independent complex molecules are connected via two strong O—H...O interactions between the phosphate groups to form hydrogen‐bonded dinuclear units, further linked into [111] columns, resulting in a very complex three‐dimensional supramolecular structure through a variety of classical and nonclassical hydrogen bonds, as well as π–π interactions.  相似文献   

17.
The title methanol solvate, C24H22N4O5·CH3OH, forms an extended three‐dimensional hydrogen‐bonded structure, assisted by the presence of several good donor and acceptor sites. It shows none of the crystal packing features typically expected of piperazinediones, such as amide‐to‐amide R22(8) hydrogen bonding. In this structure the methanol solvent appears to play only a space‐filling role; it is not involved in any hydrogen bonding and instead is disordered over several sites. This study reports, to the best of our knowledge, the first crystal structure of an indane‐containing piperazinedione compound which exhibits a three‐dimensional hydrogen‐bonded structure formed by classical (N—H...O and N—H...N) hydrogen‐bonding interactions.  相似文献   

18.
In the title compound, {[Zn(C8H4O5)(C12H8N2)]·H2O}n or {[Zn(OH‐BDC)(phen)]·H2O}n (where OH‐H2BDC is 5‐hydroxy­isophthalic acid and phen is 1,10‐phenanthroline), the Zn atoms are coordinated by two N atoms from the phen ligands and by four O atoms from hydroxy­isophthalate ligands in a highly distorted octahedral geometry, with Zn—O distances in the range 2.042 (4)–2.085 (5) Å and Zn—N distances of 2.133 (5) and 2.137 (5) Å. The {[Zn(OH‐BDC)(phen)]·H2O}n infinite zigzag polymer forms a helical chain of [Zn2(OH‐BDC)2]n units. Face‐to‐face π–π interactions (3.60–3.75 Å) occur between two phen rings belonging to the same helical chain. Consolidation of the packing structure is achieved by O—H⋯O hydrogen‐bonding interactions between the carboxyl­ate O atoms, the hydroxyl group and the water mol­ecule, forming two‐dimensional sheets.  相似文献   

19.
The structure of the ionic title compound, (C5H7N6)2[Nd2(C5O5)4(H2O)8], consists of anionic dimers built around an inversion centre and is made up of an NdIII cation, two croconate (croco) dianions and four water molecules (plus their inversion images), with two noncoordinated symmetry‐related 2,6‐diamino‐1H‐purin‐3‐ium (Hdap+) cations providing charge balance. Each NdIII atom is bound to nine O atoms from four water and three croco units. The coordination polyhedron has the form of a rather regular monocapped square antiprism. The croconate anions are regular and the Hdap+ cation presents a unique, thus far unreported, protonation state. The abundance of hydrogen‐bonding donors and acceptors gives rise to a complex packing scheme consisting of dimers interlinked along the three crystallographic directions and defining anionic `cages' where the unbound Hdap+ cations lodge, linking to the mainframe via (N—H)Hdap...Owater/croco and (O—H)water...NHdap interactions.  相似文献   

20.
3′‐Amino‐3′‐deoxyguanosine was synthesized from guanosine in eight steps and 58% overall yield. The 2′,3′‐diol of 5′‐O‐[(tert‐butyl)diphenylsilyl]‐2‐N‐[(dimethylamino)methylidene]guanosine was reacted with α‐acetoxyisobutyryl bromide and treated with 0.5n NH3 in MeOH to yield 9‐{2′‐O‐acetyl‐3′‐bromo‐5′‐O‐[(tert‐butyl)diphenylsilyl]‐3′‐deoxy‐β‐D ‐xylofuranosyl]‐2‐N‐[(dimethylamino)methylidene]guanine, which was reacted with benzyl isocyanate, NaH, and then 3.0n NaOH, and finally with Pd/C (10%) and HCO2NH4 in EtOH/AcOH to afford 3′‐amino‐3′‐deoxyguanosine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号