首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
基于全尺寸铁路车轴疲劳试验,观察并分析了微动区损伤形貌及损伤机理.基于测量的磨损轮廓建立有限元模型,计算分析了微动磨损对过盈配合面微动参量及轴向应力的影响.结果表明:轮座近加载侧存在1个宽度约为20 mm的微动损伤区,根据形貌特征可以分为3个区域.仿真得到的微动滑移区宽度与损伤区宽度基本一致,张开区宽度略小于磨损区.未磨损时,接触压应力、摩擦剪应力及轴向应力峰值均出现在接触最边缘;在微动磨损作用下,接触压应力、摩擦剪应力、轴向应力峰值出现在磨损-未磨损边界,且轴向应力数值在磨损区由负变正.磨屑的存在为接触面提供承载平台,在一定程度上抑制应力集中向内部转移.  相似文献   

2.
高速列车车轮磨耗预测仿真   总被引:5,自引:2,他引:3  
为了研究高速列车车轮磨耗问题,建立了车辆多体系统动力学和车轮磨耗耦合模型.模型中考虑了车辆系统悬挂非线性?轮轨接触几何非线性和轮轨蠕滑力非线性.采用数值仿真方法研究车轮型面的磨耗分布和发展.考虑车辆通过一条由直线和不同曲线组成的典型线路,通过动力学仿真计算轮轨接触情况,采用FASTSIM计算轮轨接触斑上车轮磨耗量,进行车轮型面磨耗量的累积和型面外形更新,然后再进入下一个磨耗循环的计算.通过比较分析,选择车轮型面垂直磨耗0.1mm为型面更新的条件,分别采用Archard磨耗模型?基于摩擦功的磨耗模型和基于磨耗指数的磨耗模型来预测车轮型面磨耗发展情况.并与测量得到的车辆实际线路运行中车轮磨耗量进行了比较.结果表明,仿真得到的车轮型面磨耗发展情况和实际测量结果趋势相同,其中基于磨耗功和磨耗指数模型的计算结果接近,而Archard模型算得的轮缘磨耗相对较大.因此,可以根据具体线路有针对性地选择磨耗模型,通过仿真方法预测车轮型面的磨耗,为高速列车的安全可靠运行提供指导.  相似文献   

3.
高速列车轴承可靠性评估关键力学参量研究进展   总被引:1,自引:2,他引:1  
轴承是高速列车牵引传动和轮轴系统的关键零部件. 受列车运行过程中电机转矩、齿轮啮合以及轮轨随机激励的影响,轴承可能发生疲劳破坏, 严重影响高速列车的行车安全.我国特有的复杂运用条件对轴承部件的疲劳性能提出了更高的要求,而轴承疲劳可靠性的基础理论和关键技术是我国轴承正向设计研发中的薄弱环节.可靠性评估方面的相关研究在解决轴承可靠性研究的瓶颈问题中起到了承上启下的关键作用.高速列车轴承可靠性评估手段与技术旨在获得使用环境中轴承可靠性评估的关键力学参量,并以此推动复杂激励下轴承疲劳可靠性理论研究. 因此,需要哪些关键力学参量并且在复杂的实际使用环境下如何去获取这些力学参量是进行高速列车轴承可靠性评估的关键所在.本文首先概述了高速列车轴承所处的复杂使用环境及运用中的主要失效模式,并据此分析了高速列车轴承可靠性评估所需的关键力学参量,强调了轴承内部滚滑行为和载荷分布在可靠性评估和轴承状态监测中的重要作用,之后从计算模型和测试技术等方面系统阐述了针对这两个关键力学参量的研究进展.最后提出了在高速列车轴承可靠性评估关键力学参量特征及测试技术研究中值得关注的若干问题.   相似文献   

4.
高速列车在制动过程中,制动盘在制动块的摩擦力作用下温度急剧升高,从而产生了热应力。过高的热应力往往会引起制动盘的疲劳破损,因此在设计制动盘时考虑温度场的影响非常重要。对速度为300km/h的列车在紧急制动工况下的制动盘,建立了含有局部内热源的数学模型和瞬态热传导方程。采用微分求积法,对热传导方程中的温度函数进行关于空间坐标的离散,得到了离散节点上仅含时间自变量的温度函数表示的一阶常微分方程组,然后采用龙格-库塔法求解。最后,对Mechanite Cast Iron G.C.40、AISI301、Chromium Copper Casting三种材料制造的制动盘进行分析和计算,得到了制动过程中温度随时间和沿轮轴半径的变化情况。结果表明:导热好的材料的温度沿径向分布的均匀程度好;制动过程中有动压力作用时,导热好的材料在有效摩擦区域沿径向的温度场与热流的分布规律基本一致,并逐渐趋向于稳态值。  相似文献   

5.
基于Fluent与Simpack的高速列车流固耦合联合仿真   总被引:1,自引:0,他引:1  
基于列车系统动力学和高速列车空气动力学建立了高速列车流固耦合联合仿真计算方法。利用Fluent和Simpack分别计算高速列车气动特性和气动作用下的高速列车动力学性能,通过实时传递气动参数和姿态参数,实现高速列车流固耦合的联合仿真。利用建立的流固耦合方法研究了横风速度为10.7m/s时高速列车以350km/h速度运行时的流固耦合动力学行为。比较了离线仿真和联合仿真两种方法下列车气动力与姿态、安全性和舒适性指标的差异。研究表明,列车一气流的流固耦合效应对头车气动力和姿态的影响显著,头车安全性指标有所恶化。  相似文献   

6.
对于微动疲劳问题,循环应力比的大小会影响试件应力状态及分布,从而影响疲劳裂纹的萌生位置.本文通过对一类微动疲劳问题进行有限元法分析,模拟疲劳实验过程,并采用最大应力变化幅△σθmax作为指标预测了不同应力比下疲劳裂纹的萌生位置.数值分析显示,在应力比不是很大时,试件与微动接触头的边缘存在接触,并在此处产生较大的应力集中,容易萌生裂纹;而在应力比足够高时,微动接触头端部与试件呈恒张开状态,△σθmax及裂纹萌生发生在距初始接触区边缘一定距离处.疲劳裂纹萌生位置的理论预测结果与相关试验的疲劳裂纹发生位置比较一致.  相似文献   

7.
核电蒸汽发生器传热管在微幅磨损与交变载荷的作用下形成微动疲劳,导致其表面裂纹萌生和扩展乃至破裂,从而影响反应堆的安全. 为研究径向载荷以及轴向交变应力对690合金管微动疲劳寿命的影响规律,开展690合金管管材的微动疲劳试验,获得690合金管管材的微动疲劳寿命曲线,并与相关研究数据进行对比分析,以便探讨材料在微动疲劳下的寿命模型. 对不同载荷下的690合金管试样的磨痕表面进行三维形貌和扫描电镜观测,分析磨损表面的损伤机理;对不同载荷下的690合金管试样断口的宏观与微观形貌进行表征,分析裂纹萌生、起裂过程及其失效机理. 结果表明690合金管与403不锈钢(SS)抗振条间的磨损机理为剥层及磨粒磨损;690合金管在径向载荷作用下于微动磨损处产生裂纹源,裂纹在轴向交变应力的作用下不断向内部扩展,最终导致断裂;其断裂形式为解理疲劳断裂.   相似文献   

8.
建立了高速列车头车的有限元模型,运用有限元软件LS-DYNA模拟了头车碰撞刚性墙的冲击过程。在碰撞发生时,原有设计方案的牵引梁主体的变形以整体屈曲为主,不利于缓冲吸能。在对原设计的耐撞性分析的基础上,建议对原有牵引梁结构加以改进,并在前端增加两组不同尺寸和厚度的带圆角的方管作为缓冲吸能管,考虑了在缓冲管中填充泡沫铝与否,形成了4种设计方案。数值模拟结果表明,与原设计方案相比,新方案的整个头车的吸能量有大幅度提高,刚性墙反力的峰值也有一定程度的降低,采用大的圆角半径的厚管并填充泡沫铝的方案的改进效果最明显。  相似文献   

9.
高速列车车轮多边形磨耗是一种沿车轮周向的不均匀磨耗,是列车服役过程中常见的车轮失效现象,其产生的剧烈轮轨激励严重威胁车辆系统服役可靠性.制动系统作为保障高速列车服役安全的核心部件,其界面摩擦学行为直接受到轮轨激励的影响.为探究车轮多边形激励下的制动界面摩擦学行为,建立了刚柔耦合车辆动力学模型和制动系统热机耦合有限元模型,并分别通过线路试验和台架试验验证了模型的正确性.然后,提出一种考虑车轮多边形激励的制动界面摩擦学行为分析方法,能够真实地反映服役过程中制动界面摩擦学行为.基于此,研究了不同车辆运行速度下车轮多边形激励对制动系统动态接触、温度以及振动特性的影响规律.结果表明:车轮多边形磨耗导致系统接触面积、摩擦热、接触应力和振动等摩擦学行为更为复杂且剧烈.此外,系统接触面积标准差和振动加速度均方根值随速度的增加而增大.因此,车轮多边形磨耗对制动界面摩擦学行为具有不可忽略的影响.该研究成果可为制动系统界面摩擦学行为研究及结构优化设计提供有效方法与工程指导.  相似文献   

10.
研究了中国高速列车车轮多边形磨耗的形成原因,考虑轮对的旋转惯量,建立了高速列车轮对-轨道-盘式制动系统有限元模型. 基于轮轨系统摩擦自激振动的理论,采用有限元复特征值分析法研究了高速列车制动时轮对-轨道-盘式制动系统的稳定性. 研究了饱和的轮轨蠕滑力和盘式制动系统摩擦力耦合作用对车轮多边形磨耗的影响,并调查了轮轨-轨道-盘式制动系统的参数敏感性. 数值模拟结果表明:在饱和的轮轨蠕滑力和盘式制动器摩擦力耦合作用下,轮轨系统的摩擦自激振动导致高速列车车轮多边形磨耗的产生,其导致的21~22阶和23~24阶车轮多边形磨耗占主导地位,这与中国高速列车高阶车轮多边形磨耗最为符合. 饱和的轮轨蠕滑力主要影响较低阶车轮多边形磨耗,盘式制动器摩擦力主要影响较高阶车轮多边形磨耗. 制动压力为13 kN时,车轮多边形磨耗形成的几率最小,发展速度最慢. 过高或者过低的垂向悬挂力均不利于抑制车轮多边形磨耗. 垂向悬挂力为75 kN时,车轮多边形磨耗形成的可能性最小,发展速度最慢.   相似文献   

11.
王宝森  刘永强  张斌 《力学学报》2022,54(7):1839-1852
高速列车的发展使得其关键零部件——轴承的安全问题日益突出. 现有的轴承模型均是建立在匀速工况下, 不能描述系统在变转速工况下运动状态. 为了解决这个问题, 建立了一个变转速工况下高速列车轴箱轴承转子系统动力学模型, 模型通过角度迭代计算得到了滚动体在不均匀时间内转过的总角度, 进而确定了滚动体在任意时刻的空间位置. 在匀速工况和变转速工况下, 对具有外圈故障的轴承模型进行了实验对比, 验证了模型的有效性. 利用轴心轨迹定性分析了外圈故障、内圈故障和滚动体故障对系统稳定性的影响, 并通过实验验证了分析结果的可靠性. 利用二维不变矩作为特征指标定量分析了三类故障对系统稳定性的影响. 分析结果表明: 当轴承角加速度较小时, 外圈故障对系统稳定性影响最大; 当轴承角加速度较大时, 滚动体故障对系统稳定性影响最大, 但是影响程度随着故障尺寸的变大而逐渐减小. 同样地, 利用二维不变矩作为特征指标进行了系统的稳定性临界状态分析, 确定了在不同转速工况下和不同故障类型下临界状态对应的最大故障尺寸. 研究结果表明: 随着轴承内圈转速的上升, 不同故障类型对应的最大尺寸都会减小, 其中滚动体故障尺寸大都是最小的, 说明滚动体故障对系统稳定性影响最大.   相似文献   

12.
为准确测试高速列车轴箱轴承内部滚子和滚道间接触载荷及其分布,本文选择轴承座箱体环向开槽的测试方案对轴箱轴承座进行改造,并搭建了高速列车轴箱轴承载荷分布测试实验装置.采用基于应变检测的轴承载荷分布测试方法,实测得到了宏观外部载荷在双列圆锥滚子轴承中的载荷分配,确定了单列轴承承受的外加载荷由3个滚动体分配并传递.动态测试结...  相似文献   

13.
明线会车、隧道会车和过隧道工况下的气动压力波对高速列车的动力响应和运行安全产生很大影响,本文建立了三辆编组的高速列车动力学模型,通过数值仿真得到了列车在三种工况下的车体所受的气动力,基于数值积分分析了列车的动力响应和脱轨系数。研究发现:明线会车和隧道会车工况相比,车辆的侧向运动相反。 明线会车和过隧道时,气动载荷对列车的脱轨系数影响较小,而隧道会车时,气动载荷作用对尾车的安全性影响较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号