首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The design of a fibronectin-mimetic peptide that specifically binds to the alpha 5beta 1 integrin has been widely studied because of this integrin's participation in many physiological and pathological processes. A promising design for such a peptide includes both the primary binding site RGD and the synergy site PHSRN connected by a linker and extended off of a surface by a spacer. Our original hypothesis was that the degree of hydrophobicity/hydrophilicity between the two sequences (RGD and PHSRN) in fibronectin is an important parameter in designing a fibronectin-mimetic peptide (Mardilovich, A.; Kokkoli, E. Biomacromolecules 2004, 5, 950-957). A peptide-amphiphile, PR_b, that was previously designed in our laboratory employed a hydrophobic tail connected to the N terminus of a peptide headgroup that was composed of a spacer, the synergy site sequence, a linker mimicking both the distance and hydrophobicity/hydrophilicity present in the native protein fibronectin (thus presenting an overall "neutral" linker), and finally the primary binding sequence. Even though our previous work (Mardilovich, A.; Craig, J. A.; McCammon, M. Q.; Garg, A.; Kokkoli, E. Langmuir 2006, 22, 3259-3264) demonstrated that PR_b is a promising sequence compared to fibronectin, this is the first study that tests our hypothesis by comparing PR_b to other peptides with hydrophobic or hydrophilic linkers. Furthermore, different peptide-amphiphiles were designed that could be used to study the effect of building blocks systematically, such as the peptide headgroup linker length and hydrophobicity/hydrophilicity as well as the headgroup spacer length on integrin adhesion. Circular dichroism spectroscopy was first employed, and the collected spectra demonstrated that only one peptide-amphiphile exhibited a secondary structure. Their surface topography was evaluated by taking atomic force microscopy (AFM) images of Langmuir-Blodgett peptide-amphiphile membranes supported on mica. Their adhesion was first evaluated with AFM force measurements between the different sequences and an AFM tip functionalized with purified integrins. The amphiphiles were further characterized via 1-12 h cell studies that examined human umbilical vein endothelial cell adhesion and extracellular matrix fibronectin production. The AFM studies were in good agreement with the cell studies. Overall, the adhesion studies validated our hypothesis and demonstrated for the first time that a "neutral" linker, which more closely mimics the cell adhesion domain of fibronectin, supports higher levels of adhesion compared to other peptide designs with a hydrophobic or hydrophilic linker or even fibronectin. Neutral linker lengths that were within the distance found between PHSRN and RGD in fibronectin performed equally well. However, the 10 amino acid neutral linker gave slightly better cell adhesion than did the control fibronectin at all times. Also, a short spacer was shown to give higher adhesion than other sequences with no spacer or a longer spacer, suggesting that a short spacer is necessary to extend the sequence further away from the interface. In conclusion, this work outlines a logical approach that can be applied for the rational design of any protein-mimetic peptide with two binding sites.  相似文献   

2.
Phosphorus and deuterium wide line NMR was used to determine diagrams of binary mixtures of 1,2-di-O-tetradecyl-sn-glycero-3-phosphocholine (DIOMPC) and 1,2-di-O-hexyl-sn-glycero-3-phosphocholine (DIOHPC) ether-phospholipids. By varying the hydration, h, the temperature, T, and the mole fraction, X, of long-chain ether-phospholipids, we delineated the conditions for which such systems are oriented by the magnetic field, in the presence of 100 mM KCl. The 3D domain is found for X = 62-90%, T = 27-50 degrees C, and h = 70-98%. At 80% hydration, the domain shape (X = 70-90% and T = 27-42 degrees C) is close to that already observed for ester-phospholipids mixtures (Raffard, G.; Steinbruckner, S.; Arnold, A.; Davis, J. H.; Dufourc, E. J. Langmuir 2000, 16, 7655-7662) where disc-shaped bicelles of 300-600 A have been found by electron microscopy (Arnold, A.; Labrot, T.; Oda, R.; Dufourc, E. J. Biophys. J. 2002, 83, 2667-2680). Systems made of ether-linked lipids are much more stable on time and acidic conditions than those made of ester lipids. Assuming that the disc-shaped species are also found with ether lipids, their diameter as determined from integration of phosphorus NMR lines ranges from 240 to 440 A +/- 10%; it is generally independent of hydration and temperature but decreases with decreasing long-chain lipid content, X. The structure and the dynamics of water in the DIOMPC-DIOHPC were characterized by (2)H NMR. Water exchanges between the membrane surface where it is bound and a bulk isotropic pool lead to an average ordered state for temperatures in the bicelle region and above, thus offering a larger thermal span for structural studies of dissolved molecules.  相似文献   

3.
A novel biomimetic system was used to study collective and single-molecule interactions of the alpha5beta1 receptor-GRGDSP ligand system with an atomic force microscope (AFM). Bioartificial membranes, which display peptides that mimic the cell adhesion domain of the extracellular matrix protein fibronectin, are constructed from peptide-amphiphiles. The interaction measured with the immobilized alpha5beta1 integrins and GRGDSP peptide-amphiphiles is specifically related to the integrin-peptide binding. It is affected by divalent cations in a way that accurately mimics the adhesion function of the alpha5beta1 receptor. The recognition of the immobilized receptor was significantly increased for a surface that presented both the primary recognition site (GRGDSP) and the synergy site (PHSRN) compared to the adhesion measured with surfaces that displayed only the GRGDSP peptide. At the collective level, the separation process of the receptor-ligand pairs is a combination of multiple unbinding and stretching events that can accurately be described by the wormlike chain (WLC) model of polymer elasticity. In contrast, stretching was not observed at the single-molecule level. The dissociation of single alpha5beta1-GRGDSP pairs under loading rates of 1-305 nN/s revealed the presence of two activation energy barriers in the unbinding process. The high-strength regime above 59 nN/s maps the inner barrier at a distance of 0.09 nm along the direction of the force. Below 59 nN/s a low-strength regime appears with an outer barrier at 2.77 nm and a much slower transition rate that defines the dissociation rate (off-rate) in the absence of force (k(off) degrees = 0.015 s(-1)).  相似文献   

4.
The low-temperature data for the reaction between OH and C(2)H(4) is treated canonically as either a two-well or one-well problem using the "Multiwell" suite of codes, in which a "well" refers to a minimum in the potential energy surface. The former is analogous to the two transition state model of Greenwald et al. [Greenwald, E. E.; North, S. W.; Georgievskii, Y.; Klippenstein, S. J. J. Phys. Chem. A2005, 109, 6031], while the latter reflects the dominance of the so-called "inner transition state". External rotations are treated adiabatically, causing changes in the magnitude of effective barriers as a function of temperature. Extant data are well-described with either model using only the average energy transferred in a downward direction, upon collision, ΔE(d)(T), as a fitting parameter. The best value for the parameters describing the rate coefficient as a function of temperature (200 < T/K < 400) (Data at lower temperature is too sparse to yield a recommendation.) and pressure in the form used in the NASA/JPL format [Sander, S. P.; Abbatt, J.; Barker, J. R.; Burkholder, J. B.; Friedl, R. R.; Golden, D. M.; Huie, R. E.; Kolb, C. E.; Kurylo, M. J.; Moortgat, G. K et al., Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 17, Jet Propulsion Laboratory, 2011] are k(0) = 1.0 × 10(-28)(T/300)(-3.5) cm(6) molecule(-2) s(-1) and k(∞) to 8.0 × 10(-12)(T/300)(-2.3) cm(3) molecule(-1) s(-1).  相似文献   

5.
Focal adhesions play an important role in cell spreading,migration,and overall mechanical integrity.The relationship of cell structural and mechanical properties was investigated in the context of focal adhesion processes.Combined atomic force microscopy(AFM) and laser scanning confocal microscopy(LSCM) was utilized to measure single cell mechanics,in correlation with cellular morphology and membrane structures at a nanometer scale.Characteristic stages of focal adhesion were verified via confocal fluorescent studies,which confirmed three representative F-actin assemblies,actin dot,filaments network,and long and aligned fibrous bundles at cytoskeleton.Force-deformation profiles of living cells were measured at the single cell level,and displayed as a function of height deformation,relative height deformation and relative volume deformation.As focal adhesion progresses,single cell compression profiles indicate that both membrane and cytoskeleton stiffen,while spreading increases especially from focal complex to focal adhesion.Correspondingly,AFM imaging reveals morphological geometries of spherical cap,spreading with polygon boundaries,and elongated or polarized spreading.Membrane features are dominated by protrusions of 41-207 nm tall,short rods with 1-6 μm in length and 10.2-80.0 nm in height,and long fibrous features of 31-246 nm tall,respectively.The protrusion is attributed to local membrane folding,and the rod and fibrous features are consistent with bilayer decorating over the F-actin assemblies.Taken collectively,the reassembly of F-actin during focal adhesion formation is most likely responsible for the changes in cellular mechanics,spreading morphology,and membrane structural features.  相似文献   

6.
Mechanisms of the light-induced ligand exchange reaction of (trans-I) Ru(dcbpy)(CO)2I2 (dcbpy = 4,4'-dicarboxylic acid-2,2'-bipyridine) in ethanol have been studied by transient absorption spectroscopy. Ultraviolet 20 fs excitation pulses centered at 325 nm were used to populate a vibrationally hot excited pi bipyridyl state of the reactant that quickly relaxes to a dissociative Ru-I state resulting in the release of one of the carbonyl groups. Quantum yield measurements have indicated that about 40% of the initially exited reactant molecules form the final photoproduct. A 62 fs rise component in the transient absorption (TA) signal was observed at all probe wavelengths in the visible region for the ongoing reaction, while the rise for the photoproduct was pulse limited (20 fs). We assign the observed 62 fs time component to the depopulation of the repulsive CO dissociative state. Vibrational coherences of the TA signals were observed at a wavenumber of 90 cm(-1). The resolved frequency, typical of I-Ru-I vibrational modes, is assigned to trans-cis isomerization of the iodines of the five-coordinated intermediate and damping of this oscillation in 500 fs to simultaneous solvent coordination. Cooling of the hot reactant and the product molecules occurs on a much slower time scale from 4 to 270 ps (Lehtovuori, V.; Aumanen, J.; Myllyperki?, P.; Rini, M.; Nibbering, E. T. J.; Korppi-Tommola, J. J. Phys. Chem. A 2004, 108, 1644).  相似文献   

7.
We employ experiment and theory to explore the nonlinear elasticity and yielding of concentrated suspensions of nanoparticles which interact via purely repulsive forces. These glassy suspensions are found to exhibit high exponent power law or simple exponential dependences of the shear elastic modulus and perturbative yield stress on nanoparticle volume fraction, as well as a monotonic decrease of the perturbative yield strain with increasing concentration. Our experimental observations are in good agreement with the predictions of a recently developed microscopic statistical mechanical theory, which describes glassy dynamics based on a nonequilibrium free energy that incorporates local cage correlations and activated barrier hopping processes [(1) Schweizer, K. S.; Saltzman, E. J. J. Chem. Phys. 2003, 119, 1181. (2) Saltzman, E. J.; Schweizer, K. S. J. Chem. Phys. 2003, 119, 1197. (3) Kobelev, V.; Schweizer, K. S. Phy. Rev. E 2005, 71, 021401].  相似文献   

8.
Dynamic states of cancer cells moving under shear flow in an antibody-functionalized microchannel are investigated experimentally and theoretically. The cell motion is analyzed with the aid of a simplified physical model featuring a receptor-coated rigid sphere moving above a solid surface with immobilized ligands. The motion of the sphere is described by the Langevin equation accounting for the hydrodynamic loadings, gravitational force, receptor-ligand bindings, and thermal fluctuations; the receptor-ligand bonds are modeled as linear springs. Depending on the applied shear flow rate, three dynamic states of cell motion have been identified: (i) free motion, (ii) rolling adhesion, and (iii) firm adhesion. Of particular interest is the fraction of captured circulating tumor cells, defined as the capture ratio, via specific receptor-ligand bonds. The cell capture ratio decreases with increasing shear flow rate with a characteristic rate. Based on both experimental and theoretical results, the characteristic flow rate increases monotonically with increasing either cell-receptor or surface-ligand density within certain ranges. Utilizing it as a scaling parameter, flow-rate dependent capture ratios for various cell-surface combinations collapse onto a single curve described by an exponential formula.  相似文献   

9.
Optical tweezers are widely used to measure molecular forces in biology. Such measurements are often influenced by a nearby surface that can perturb both the calibration of the tweezers as well as the hydrodynamic forces acting on microspheres to which the biomolecules are attached. In this study, we have used a very stable optical tweezers setup employing a recently developed calibration method (Toli?-N?rrelykke, S. F.; Sch?ffer, E.; Howard, J.; Pavone, F. S.; Jülicher, F.; Flyvbjerg, H. Rev. Sci. Instrum. 2006, 77 (10), 103101) to determine how the calibration of the tweezers and the forces on the microspheres depend on the height above the surface. We show that the displacement sensitivity of the tweezers is modulated by a standing light wave between the microsphere and the surface. We measured the dependence of the drag coefficient on height and compared it to exact and closed-form solutions to the Navier-Stokes equations. Also, we measured the surface force gradients in different salt solutions and for different surface blocking methods. For a given blocking method, our data suggest that microspheres can experience attractive and/or repulsive forces close to surfaces. For example, a Teflon layer reduces attractive interactions, and the presence of casein can lead to long-range repulsive interactions. These measurements are a prerequisite for the accurate measurement of normal forces with respect to an interface that occur in biological molecules held between surfaces.  相似文献   

10.
Colloid probe atomic force microscopy (CP-AFM) was used to investigate two strains of Burkholderia cepacia in order to determine what molecular scale characteristics of strain Env435 make it less adhesive to surfaces than the parent strain, G4. CP-AFM approach curves analyzed using a gradient force method showed that in a high ionic strength solution (IS=100 mM, Debye length=1 nm), the colloid probe was attracted to the surface of strain G4 at a distance of approximately 30 nm, but it was repelled over a distance of 25 nm when approaching strain Env435. Adhesion forces measured under the same solution conditions during colloid retraction showed that 1.38 nN of force was required to remove the colloid placed in contact with the surface of strain G4, whereas only 0.58 nN was required using strain Env435. At IS=1mM (Debye length=10nm), the attractive force observed with G4 was no longer present, and the repulsive force seen with Env435 was extended to approximately 250 nm. The adhesion of the bacteria to the probe was much less at low IS solution (1 mM) than at high IS (100 mM). The greater adhesion characteristics of strain G4 compared to Env435 were confirmed in column tests. Strain G4 had a collision efficiency of alpha=0.68, while strain Env435 had a much lower collision efficiency of alpha=0.01 (IS=100 mM). These results suggest that the reduced adhesion of strain Env435 measured in column tests is due to the presence of high molecular weight extracellular polymeric substances that extend out from the cell surface, creating long-range steric repulsion between the cell and a surface. Adhesion is reduced as these polymers do not appear to be "sticky" when placed in contact with a surface in AFM tests.  相似文献   

11.
Bicellar model membranes composed of 1,2-dimyristoylphosphatidylcholine (DMPC) and 1,2-dihexanoylphosphatidylcholine (DHPC), with a DMPC/DHPC molar ratio of 5, and doped with the negatively charged lipid 1,2-dimyristoylphosphatidylglycerol (DMPG), at DMPG/DMPC molar ratios of 0.02 or 0.1, were examined using small angle neutron scattering (SANS), (31)P NMR, and (1)H pulsed field gradient (PFG) diffusion NMR with the goal of understanding temperature effects on the DHPC-dependent perforations in these self-assembled membrane mimetics. Over the temperature range studied via SANS (300-330 K), these bicellar lipid mixtures exhibited a well-ordered lamellar phase. The interlamellar spacing d increased with increasing temperature, in direct contrast to the decrease in d observed upon increasing temperature with otherwise identical lipid mixtures lacking DHPC. (31)P NMR measurements on magnetically aligned bicellar mixtures of identical composition indicated a progressive migration of DHPC from regions of high curvature into planar regions with increasing temperature, and in accord with the "mixed bicelle model" (Triba, M. N.; Warschawski, D. E.; Devaux, P. E. Biophys. J.2005, 88, 1887-1901). Parallel PFG diffusion NMR measurements of transbilayer water diffusion, where the observed diffusion is dependent on the fractional surface area of lamellar perforations, showed that transbilayer water diffusion decreased with increasing temperature. A model is proposed consistent with the SANS, (31)P NMR, and PFG diffusion NMR data, wherein increasing temperature drives the progressive migration of DHPC out of high-curvature regions, consequently decreasing the fractional volume of lamellar perforations, so that water occupying these perforations redistributes into the interlamellar volume, thereby increasing the interlamellar spacing.  相似文献   

12.
In this paper, we describe the first observations of photoinitiated interprotein electron transfer (ET) within sol-gels. We have encapsulated three protein-protein complexes, specifically selected because they represent a full range of affinities, are sensitive to different types of dynamic processes, and thus are expected to respond differently to sol-gel encapsulation. The three systems are (i) the [Zn, Fe(3+)L] mixed-metal hemoglobin hybrids, where the alpha(1)-Zn and beta(2)-Fe subunits correspond to a "predocked" protein-protein complex with a crystallographically defined interface (Natan, M. J.; Baxter, W. W.; Kuila, D.; Gingrich, D. J.; Martin, G. S.; Hoffman, B. M. Adv. Chem. Ser. 1991, 228 (Electron-Transfer Inorg., Org., Biol. Syst.), 201-213), (ii) the Zn-cytochrome c peroxidase complex with cytochrome c, [ZnCcP, Fe(3+)Cc], having an intermediate affinity between its partners (Nocek, J. M.; Zhou, J. S.; De Forest, S.; Priyadarshy, S.; Beratan, D. N.; Onuchic, J. N.; Hoffman, B. M. Chem. Rev. 1996, 96, 2459-2489), and (iii) the [Zn-deuteromyoglobin, ferricytochrome b(5)] complex, [ZnDMb, Fe(3+)b(5)], which is loosely bound and highly dynamic (Liang, Z.-X.; Nocek, J.; Huang, K.; Hayes, R. T.; Kurnikov, I. V.; Beratan, D. N.; Hoffman, B. M. J. Am. Chem. Soc. 2002, 124, 6849-6859. Intersubunit ET within the hybrid does not involve second-order processes or subunit rearrangements, and thus is influenced only by perturbations of high-frequency motions coupled to ET. For the latter two complexes, sol-gel encapsulation eliminates second-order processes: protein partners encapsulated as a complex must stay together throughout a photoinitiated ET cycle, while proteins encapsulated alone cannot acquire a partner. It further modulates intracomplex motions of the two partners.  相似文献   

13.
The adsorption of phosphatidylcholine (PC) vesicles (30, 50, and 100 nm nominal diameters) and of dye-labeled PC vesicles (labeled with 6% Texas Red fluorophore (TR) and encapsulated carboxy fluorescein (CF)) to glass surfaces was studied by contact mode atomic force microscopy in aqueous buffer. These studies were performed in part to unravel details of the previously observed isolated rupture of dye-labeled PC vesicles on glass (Johnson, J. M.; Ha, T.; Chu, S.; Boxer, S. G. Biophys. J. 2002, 83, 3371-3379), specifically to differentiate partial rupture, that is, pore formation and leakage of entrapped dye, from full rupture to form bilayer disks. In addition, the adhesion potential of PC vesicles on glass was calculated based upon the adhesion-driven flattening of adsorbed vesicles and a newly developed theoretical model. The vesicles were found to flatten considerably upon adsorption to glass (width-to-height ratio of approximately 5), which leads to an estimate for the adhesion potential and for the critical rupture radius of 1.5 x 10(-4) J/m2 and 250 nm, respectively. Independent of vesicle size and loading with dye molecules, the adsorption of intact vesicles was observed at all concentrations below a threshold concentration, above which the formation of smooth lipid bilayers occurred. In conjunction with previous work (Johnson, J. M.; Ha, T.; Chu, S.; Boxer, S. G. Biophys. J. 2002, 83, 3371-3379), these data show that 6% TR 20 mM CF vesicles adsorb to the surface intact but undergo partial rupture in which they exchange content with the external buffer.  相似文献   

14.
15.
This study uses atomic force microscopy (AFM) force-deformation (F-Δ) curves to investigate for the first time the Young's modulus of a phospholipid microbubble (MB) ultrasound contrast agent. The stiffness of the MBs was calculated from the gradient of the F-Δ curves, and the Young's modulus of the MB shell was calculated by employing two different mechanical models based on the Reissner and elastic membrane theories. We found that the relatively soft phospholipid-based MBs behave inherently differently to stiffer, polymer-based MBs [Glynos, E.; Koutsos, V.; McDicken, W. N.; Moran, C. M.; Pye, S. D.; Ross, J. A.; Sboros, V. Langmuir2009, 25 (13), 7514-7522] and that elastic membrane theory is the most appropriate of the models tested for evaluating the Young's modulus of the phospholipid shell, agreeing with values available for living cell membranes, supported lipid bilayers, and synthetic phospholipid vesicles. Furthermore, we show that AFM F-Δ curves in combination with a suitable mechanical model can assess the shell properties of phospholipid MBs. The "effective" Young's modulus of the whole bubble was also calculated by analysis using Hertz theory. This analysis yielded values which are in agreement with results from studies which used Hertz theory to analyze similar systems such as cells.  相似文献   

16.
Phase separation in cell membranes promotes the assembly of transmembrane receptors to initiate signal transduction in response to environmental cues. Many cellular behaviors are manipulated by promoting membrane phase separation through binding to multivalent extracellular ligands. However, available extracellular molecule tools that enable manipulating the clustering of transmembrane receptors in a controllable manner are rare. In the present study, we report a DNA nanodevice that enhances membrane phase separation through the clustering of dynamic lipid rafts. This DNA nanodevice is anchored in the lipid raft region of the cell membrane and initiated by ATP. In a tumor microenvironment, this device could be activated to form a long DNA duplex on the cell membrane, which not only enhances membrane phase separation, but also blocks the interaction between the transmembrane surface adhesion receptor and extracellular matrix, leading to reduced migration. We demonstrate that the ATP-activated DNA nanodevice could inhibit cancer cell migration both in vitro and in vivo. The concept of using DNA to regulate membrane phase separation provides new possibilities for manipulating versatile cell functions through rational design of functional DNA structures.

A DNA nanodevice is developed to enhance the cell membrane phase separation in a tumor microenvironment to weaken the formation of focal adhesion. As a result, the migration of cancer cells is inhibited both in vitro and in vivo.  相似文献   

17.
About 30% of the proteins in mammalian systems are membrane bound or integrated (e.g., GPCRs). It is inherently difficult to investigate receptor-ligand interactions on a molecular level in their natural membrane environment. Here, we present a new method based on saturation transfer difference (STD) NMR to characterize at an atomic level binding interactions of cell surface proteins in living cells. Implemented as a double difference technique, STD NMR allows the direct observation of binding events and the definition of the binding epitopes of ligands. The binding of the pentapeptide cyclo(RGDfV) to the surface glycoprotein integrin alpha(IIb)beta3 of intact human blood platelets can be detected by saturation transfer double difference (STDD) NMR in less than an hour. A 5-fold higher STD response reflects a significantly higher affinity of integrin alpha(IIb)beta3 in native platelets than in liposomes, which demonstrates the importance of studying membrane proteins in their natural environment. Also, the binding mode of cyclo(RGDfV) in the arginine glycine region is slightly different when interacting with native integrin in platelets compared to integrin reintegrated into liposomes.  相似文献   

18.
The recently developed (Song, L.; Wu, W.; Zhang, Q.; Shaik, S. J. Phys. Chem. A 2004, 108, 6017-6024) valence bond method coupled to a polarized continuum model (VBPCM) is used to address the long standing conundrum of the heterolytic dissociation of the C-Cl and Si-Cl bonds, respectively, in tertiary-butyl chloride and trimethylsilyl chloride in condensed phases. The method is used here to compare the bond dissociation in the gas phase and in aqueous solution. In addition to the ground state reaction profile, VB theory also provides the energies of the purely covalent and purely ionic VB structures as a function of the reaction coordinate. Accordingly, the C-Cl and Si-Cl bonds are shown to be of different natures. In the gas phase, the resonance energy arising from covalent-ionic mixing at equilibrium geometry amounts to 42 kcal/mol for tertiary-butyl chloride, whereas the same quantity for trimethylsilyl chloride is significantly higher at 62 kcal/mol. With such a high value, the root cause of the Si-Cl bonding is the covalent-ionic resonance energy, and this bond belongs to the category of charge-shift bonds (Shaik, S.; Danovich, D.; Silvi, B.; Lauvergnat, D.; Hiberty, P. C. Chem.- Eur. J. 2005, 11, 6358). This difference between the C-Cl and Si-Cl bonds carries over to the solvated phase and impacts the heterolytic cleavages of the two bonds. For both molecules, solvation lowers the ionic curve below the covalent one, and hence the bond dissociation in the solvent generates the two ions, Me3E+ Cl- (E = C, Si). In both cases, the root cause of the barrier is the loss of the covalent-ionic resonance energy. In the heterolysis reaction of Si-Cl, the covalent-ionic resonance energy remains large and fully contributes to the dissociation energy, thereby leading to a high barrier for heterolytic cleavage, and thus prohibiting the generation of ions. By contrast, the covalent-ionic resonance energy is smaller for the C-Cl bond and only partially contributes to the barrier for heterolysis, which is consequently small, leading readily to ions that are commonly observed in the classical SN1 mechanism. Thus, the reluctance of R3Si-X molecules to undergo heterolysis in condensed phases and more generally the rarity of free silicenium ions under these conditions are experimental manifestations of the charge-shift character of the Si-Cl bond.  相似文献   

19.
We report the temperature, pH, glucose concentration, NaCl concentration, and operating atmosphere dependence of the power output of a compartment-less miniature glucose-O(2) biofuel cell, comprised only of two bioelectrocatalyst-coated carbon fibers, each of 7 micro m diameter and 2 cm length (Mano, N.; Mao, F.; Heller, A. J. Am. Chem. Soc. 2002, 124, 12962). The bioelectrocatalyst of the anode consists of glucose oxidase from Aspergillus niger electrically "wired" by polymer I, having a redox potential of -0.19 V vs Ag/AgCl. That of the cathode consists of bilirubin oxidase from Trachyderma tsunodae "wired" by polymer II having a redox potential of +0.36 V vs Ag/AgCl (Mano, N.; Kim, H.-H.; Zhang, Y.; Heller, A. J. Am. Chem. Soc. 2002, 124, 6480. Mano, N.; Kim, H.-H.; Heller, A. J. Phys. Chem. B 2002, 106, 8842). Implantation of the fibers in the grape leads to an operating biofuel cell producing 2.4 micro W at 0.52 V.  相似文献   

20.
Recently, Rozovsky et al. reported on the morphology and dynamics of superstructures in three-component lipid bilayers containing saturated lipid, unsaturated lipid, and cholesterol (Rozovsky, S.; Kaizuka, Y.; Groves, J. T. J. Am. Chem. Soc. 2005, 127, 36). We suggest that the observed sequence of the striped-to-hexagonal morphological transition in mixed bilayers can be attributed to an enhanced membrane surface tension that is induced by the vesicle adhesion onto the solid surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号