首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gold had been considered to be an extremely inert metal, but recently it was found that nanometer-sized gold particles on metal-oxide supports acted as catalysts for simple organic reactions, such as oxidation and hydrogenation, even at or below room temperature. Herein, we report that gold nanoparticles (AuNPs) of zero oxidation state (Au0) are catalytically active for a C--C bond-forming reaction, the cyanosilylation of aldehydes. The AuNP-catalyzed cyanosilylation proceeded smoothly at room temperature with 0.2 wt % loading of AuNPs. The reactions of aromatic aldehydes were almost quantitative, except for benzaldehyde derivatives containing the electron-withdrawing NO2 group, and alpha,beta-unsaturated aromatic aldehydes were the most reactive substrates. The reactions also went smoothly for aliphatic aldehydes. Mechanistic studies indicated that the reactions proceeded both homogeneously and heterogeneously: homogeneous catalysis by leached gold species and heterogeneous catalysis by the adsorption of the reactants (aldehydes and trimethylsilyl cyanide) onto AuNPs. The ratio of homogeneous and heterogeneous catalysis was estimated to be approximately 4:1.  相似文献   

2.
Abounding potential technological applications is one of the many reasons why adsorption of aliphatic thiols on gold surface is a subject of intense research by many research groups. Understanding and exploring the nature of adsorbed species, the site of adsorption and the nature of interaction between adsorbed species and the gold surface using experimental and theoretical investigations is an active area of pursuit. However, despite a large number of investigations to understand the atomistic structures of thiols on Au(111), some of the basic issues are still unaddressed. For instance, there is still no clear information about the mechanism of adsorption of alkylthiol on gold surface. Furthermore, the reactivity and mechanism of adsorption of alkylthiol is likely to differ when gold adatoms and/or vacancies in the gold layers are considered. In this work, we have tackled these issues by computing the stationary states involved in the thiols adsorption in order to shed light on the kinetics aspects of adsorption process. In this respect, we have considered a variety of thiols into consideration such as methylthiol, dimethylsulfide, dimethyldisulfide, thioacetates, and thiocyanates. We have also considered the cleavage mechanism in the clean and the reconstructed surface scenario and the structure, energetics and spin densities have been computed using electronic structure calculations. For all the studied cases, an homolytic cleavage of CH3S–X (X = H, CH3, SCH3, CN, and COCH3) bond has been found to occur upon adsorption on the gold surface.  相似文献   

3.
Mingshu CHEN 《物理化学学报》2017,33(12):2424-2437
明确催化剂的活性位本质和构建多相催化的结构和反应性能之间的准确关系是催化基础研究的重点,表面科学研究基于丰富的表征测试手段能够较好地在分子原子水平测定表面结构以明确催化剂活性位本质,并通过高压原位反应池测定相关催化反应性能,获得较可靠的催化剂构效关系。本文简要总结了近年来本人参与的几个模型催化研究例子,包括贵金属表面上CO和烷烃催化氧化的活性表面、纳米Au膜的制备和CO氧化的催化活性位、VO_x/Pt(111)上丙烷氧化的协同作用、Au Pd合金上醋酸乙烯酯合成Au的助催化作用、模型氧化物上纳米Pt的庚烷脱氢环化制甲苯的粒径关系等,以及相关模型催化研究技术的进展。  相似文献   

4.
The depth of our understanding in catalysis is governed by the information we have about the number of active sites and their molecular structure. The nature of an active center on the surface of a working heterogeneous catalyst is, however, extremely difficult to identify and precise quantification of active species is generally missing. In metathesis of propene over dispersed molybdenum oxide supported on silica, only 1.5% of all Mo atoms in the catalyst are captured to form the active centers. Here we combine infrared spectroscopy in operando with microcalorimetry and reactivity studies using isotopic labeling to monitor catalyst formation. We show that the active Mo(VI)-alkylidene moieties are generated in situ by surface reaction of grafted molybdenum oxide precursor species with the substrate molecule itself gaining insight into the pathways limiting the number of active centers on the surface of a heterogeneous catalyst. The active site formation involves sequential steps requiring multiple catalyst functions: protonation of propene to surface Mo(VI)-isopropoxide species driven by surface Br?nsted acid sites, subsequent oxidation of isopropoxide to acetone in the adsorbed state owing to the red-ox capability of molybdenum leaving naked Mo(IV) sites after desorption of acetone, and oxidative addition of another propene molecule yielding finally the active Mo(VI)-alkylidene species. This view is quite different from the one-step mechanism, which has been accepted in the community for three decades, however, fully consistent with the empirically recognized importance of acidity, reducibility, and strict dehydration of the catalyst. The knowledge acquired in the present work has been successfully implemented for catalyst improvement. Simple heat treatment after the initial propene adsorption doubled the catalytic activity by accelerating the oxidation and desorption-capturing steps, demonstrating the merit of knowledge-based strategies in heterogeneous catalysis. Molecular structure of active Mo(VI)-alkylidene sites derived from surface molybdena is discussed in the context of similarity to the highly active Schrock-type homogeneous catalysts.  相似文献   

5.
Surface organometallic chemistry is an area of heterogeneous catalysis which has recently emerged as a result of a comparative analysis of homogeneous and heterogeneous catalysis. The chemical industry has often favored heterogeneous catalysis, but the development of better catalysts has been hindered by the presence of numerous kinds of active sites and also by the low concentration of active sites. These factors have precluded a rational improvement of these systems, hence the empirical nature of heterogeneous catalysis. Catalysis is primarily a molecular phenomenon, and it must involve well-defined surface organometallic intermediates and/or transition states. Thus, one must be able to construct a well-defined active site, test its catalytic performance, and assess a structure-activity relationship, which will be used, in turn-as in homogeneous catalysis-to design better catalysts.By the transfer of the concepts and tools of molecular organometallic chemistry to surfaces, surface organometallic chemistry can generate well-defined surface species by understanding the reaction of organometallic complexes with the support, which can be considered as a rigid ligand. This new approach to heterogeneous catalysis can bring molecular insight to the design of new catalysts and even allow the discovery of new reactions (Ziegler-Natta depolymerization and alkane metathesis). After more than a century of existence, heterogeneous catalysis can still be improved and will play a crucial role in solving current problems. It offers an answer to economical and environmental problems faced by industry in the production of molecules (agrochemicals, petrochemicals, pharmaceuticals, polymers, basic chemicals).  相似文献   

6.
The surface chemistry of oxygen and oxygenates on Rutile TiO2(110) is of great interest for various applications such as heterogeneous catalysis and photo catalysis. Though it is generally accepted that surface defects are active sites, the role of subsurface defects is under debate. We have therefore investigated the influence of the bulk defect density on the reductive coupling of benzaldehyde to stilbene as a model system. Using IRRAS we identify stilbene diolate as a reduction intermediate. The concentration of this intermediate is proportional to the bulk defect density, whereas adsorption of benzaldehyde at lower temperatures is not affected, which indicates a dominant role of Ti interstitials at temperatures above 400 K.  相似文献   

7.
Solid supported or ligand capped gold nanomaterials (AuNMs) emerged as versatile and recyclable heterogeneous catalysts for a broad variety of conversions in the ongoing catalytic ′gold rush′. Existing at the border of homogeneous and heterogeneous catalysis, AuNMs offer the potential to merge high catalytic activity with significant substrate selectivity. Owing to their strong binding towards the surface atoms of AuMNs, NHCs offer tunable activation of surface atoms while maintaining selectivity and stability of the NM even under challenging conditions. This work summarizes well-defined catalytically active NHC capped AuNMs including spherical nanoparticles and atom-precise nanoclusters as well as the important NHC design choices towards activity and (stereo-)selectivity enhancements.  相似文献   

8.
近年来穆斯堡尔谱在多相催化中的应用研究已取得迅速的进展。本文围绕催化工作者关心的若干问题:催化剂的制备,金属与担体的相互作用,原子簇,催化活性物种的表征等,着重对近十年来的进展,作一综合性的介绍。  相似文献   

9.
近年来,负载型金催化剂被视为多相催化工业化进程中的机遇和挑战,因而广受研究.载体的选取可以有效调控纳米金催化剂的化学结构及催化活性.针对载体本身对反应是否具有活性,可将其分为活性载体与惰性载体.活性载体主要为具有还原性的金属氧化物;而惰性载体,诸如碳基材料、氧化硅、氧化铝等,多为反应条件下不具备还原性或不可进行还原处理...  相似文献   

10.
The interactions of oxygen atoms and Au(100) can affect the surface morphology by inducing the hexagonal type reconstruction to the surface layer and forming a lifted O-Au-O species.  相似文献   

11.
Many heterogeneous catalysts exploit strained active layers to modulate reactivity and/or selectivity. It is therefore significant that density functional theory, as well as experimental approaches, find that tensile strain makes the gold surface more binding for oxygen, in other words, less noble. We show that this behavior does not apply when re‐structuring of the gold surface is allowed to occur simultaneously with the adsorption of oxygen. In situ cantilever‐bending studies show the surface stress to increase when oxygen species adsorb on a (111)‐textured gold surface in aqueous H2SO4. This implies a positive sign of the electrocapillary coupling parameter and, hence, a trend for weaker oxygen binding in response to tensile strain. These conflicting findings indicate that different electrosorption processes, and specifically oxygen species adsorption on the bulk‐terminated surface, exhibit fundamentally different coupling between the chemistry and the mechanics of the surface.  相似文献   

12.
It is known that the interplay between molecules and active sites on the topmost surface of a solid catalyst determines its activity in heterogeneous catalysis. The electron density of the active site is believed to affect both adsorption and activation of reactant molecules at the surface. Unfortunately, commercial X-ray photoelectron spectroscopy, which is often adopted for such characterization, is not sensitive enough to analyze the topmost surface of a catalyst. Most researchers fail to acknowledge this point during their catalytic correlation, leading to different interpretations in the literature in recent decades. Recent studies on pristine Cu2O [Nat. Catal. 2019 , 2, 889; Nat. Energy 2019 , 4, 957] have clearly suggested that the electron density of surface Cu is facet dependent and plays a key role in CO2 reduction. Herein, it is shown that pristine CeO2 can reach 2506/1133 % increase in phosphatase-/peroxidase-like activity if the exposed surface is wisely selected. By using NMR spectroscopy with a surface probe, the electron density of the surface Ce (i.e., the active site) is found to be facet dependent and the key factor dictating their enzyme-mimicking activities. Most importantly, the surface area of the CeO2 morphologies is demonstrated to become a factor only if surface Ce can activate the adsorbed reactant molecules.  相似文献   

13.
First-principles calculations based on density functional theory-generalized gradient approximation method have been performed for hydrogen (H) adsorption on Mo(1 1 0) surface. For various coverages, the hollow (hol) site was found to be the most stable binding site. The adsorption energy of this site was slightly increased as the increasing of hydrogen coverage. Subsurface (sub) occupation at low and medium coverages was ruled out while it became to be stable at the coverage of 1 ML. This is also supported by the potential energy surface (PES) study for hydrogen diffusing from hol to sub site. It’s interesting to find a surface reconstruction at the coverage of 1 ML, which is characterized by the lateral shift of the topmost layer for the sub adsorption. At higher coverage, the local density of states (LDOS) analysis showed that a new peak was clearly visible which was ascribed to a surface state induced by hydrogen adsorption. This surface state was mostly localized on the hydrogen atom and the first Mo layer, implying the hybridization of the hydrogen 1s states and the Mo metal states.  相似文献   

14.
Multi-walled carbon-nanotubes (MWCNTs) are drawing increasing attention in recent years. This material possesses a series of unique features, such as its nanometer-sized channel, highly conductive graphitized tube-wall, sp 2-C-constructed surface, and excellent performance for adsorption and spillover of hydrogen, which make the MWCNTs full of promise to be a novel catalyst support or promoter. This article will review the recent progress in applied research of MWCNTs as a novel promoter in heterogeneous catalysis for active components, including metals and their oxides, with the emphasis on the study and development of MWCNT-promoted catalysts related to CO/CO2 hydrogenation to alcohols and dimethyl ether based on the recent works carried out in our laboratory.  相似文献   

15.
Acid-base bifunctional heterogeneous catalysts containing carboxylic and amine groups, which were immobilized at defined distance from one another on the mesoporous solid were synthesized by immobilizing lysine onto carboxyl-SBA-15. The obtained materials were characterized by X-ray diffraction (XRD), N2 adsorption, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron micrographs (SEM), transmission electron micrographs (TEM), elemental analysis, and back titration. Proximal-C-A-SBA-15 with a proximal acid-base distance was more active than maximum-C-A-SBA-15 with a maximum acid-base distance in aldol condensation reaction between acetone and various aldehydes. It appears that the distance between acidic site and basic site immobilized on mesoporous solid should be an essential factor for catalysis optimization.  相似文献   

16.
Whether gold is catalytically active on its own has been hotly debated since the discovery of gold-based catalysis in the 1980s. One of the central controversies is on the O(2) activation mechanism. This work, by investigating aerobic phenylethanol oxidation on gold nanoparticles in aqueous solution, demonstrates that gold nanoparticles are capable to activate O(2) at the solid-liquid interface. Extensive density functional theory (DFT) calculations combined with the periodic continuum solvation model have been utilized to provide a complete reaction network of aerobic alcohol oxidation. We show that the adsorption of O(2) is very sensitive to the environment: the presence of water can double the O(2) adsorption energy to ~0.4 eV at commonly available edge sites of nanoparticles (~4 nm) because of its strongly polarized nature in adsorption. In alcohol oxidation, the hydroxyl bond of alcohol can break only with the help of an external base at ambient conditions, while the consequent α-C-H bond breaking occurs on pure Au, both on edges and terraces, with a reaction barrier of 0.7 eV, which is the rate-determining step. The surface H from the α-C-H bond cleavage can be easily removed by O(2) and OOH via a H(2)O(2) pathway without involving atomic O. We find that Au particles become negatively charged at the steady state because of a facile proton-shift equilibrium on surface, OOH + OH ? O(2) + H(2)O. The theoretical results are utilized to rationalize experimental findings and provide a firm basis for utilizing nanoparticle gold as aerobic oxidation catalysts in aqueous surroundings.  相似文献   

17.
The importance of cooperation of heterogeneous catalysis with surface science is stressed for simultaneous adsorptive and catalytic measurements. Inverse gas chromatography and reversed-flow gas chromatography offer a suitable research ground for such collaboration. After a short introduction, adsorption physicochemical quantities of heterogeneous catalysts with typical recent results, chemical kinetic properties and surface energy of catalysts are described, stressing the important aspect of time-resolved chromatography, due to the heterogeneity of the solid surface of catalysts. Adsorption energies, local monolayer capacities, local isotherms and energy distribution functions are extensively described. Also, lateral molecular interactions, surface diffusion and adsorption rates on heterogeneous catalysts are described.  相似文献   

18.
Gas adsorption on zeolites constitutes the base of many technological applications of these versatile porous materials. Quite often, especially when dealing with small molecules, individual extra-framework (exchangeable) cations are considered to be the adsorption site on which molecules coming from a gas phase form the corresponding adsorption complex. Nonetheless, while that can be the case in some instances, recent research work that combines variable temperature infrared spectroscopy with periodic DFT calculations showed that some types of adsorption sites involve two or more cations, which constitute dual and multiple cation sites, respectively. Adsorption complexes formed on these cationic adsorption sites differ in both structure and stability from those formed on a single cation alone. Examples concerning CO, CO(2) and H(2) adsorption on alkali and alkaline-earth metal exchanged zeolites are reviewed, with the double purpose of clarifying concepts and highlighting their relevance to practical use of zeolites in such fields as gas separation and purification, gas storage and heterogeneous catalysis.  相似文献   

19.
Identification of active sites in gold-catalyzed hydrogenation of acrolein   总被引:1,自引:0,他引:1  
The active sites of supported gold catalysts, favoring the adsorption of C=O groups of acrolein and subsequent reaction to allyl alcohol, have been identified as edges of gold nanoparticles. After our recent finding that this reaction preferentially occurs on single crystalline particles rather than multiply twinned ones, this paper reports on a new approach to distinguish different features of the gold particle morphology. Elucidation of the active site issue cannot be simply done by varying the size of gold particles, since the effects of faceting and multiply twinned particles may interfere. Therefore, modification of the gold particle surface by indium has been used to vary the active site characteristics of a suitable catalyst, and a selective decoration of gold particle faces has been observed, leaving edges free. This is in contradiction to theoretical predictions, suggesting a preferred occupation of the low-coordinated edges of the gold particles. On the bimetallic catalyst, the desired allyl alcohol is the main product (selectivity 63%; temperature 593 K, total pressure p(total) = 2 MPa). From the experimentally proven correlation between surface structure and catalytic behavior, the edges of single crystalline gold particles have been identified as active sites for the preferred C=O hydrogenation.  相似文献   

20.
The enantioselective hydrogenation of α-ketoesters to α-hydroxyesters over Pt/Al2O3 catalysts modified by cinchona alkaloids is an interesting model reaction for the investigation of heterogeneous catalysis capable of producing optically active products. The aim of the present theoretical study is to rationalize the interaction between protonated cinchona alkaloids (modifiers) and methyl pyruvate (substrate) by investigating the possible weak complexes formed by these two species. For this purpose we use molecular mechanics and the AM1 semiempirical method. The optimization leads to two stable forms of the complexes, where the substrate is bound to the modifier via hydrogen bonding between the oxygen of the α-carbonyl of pyruvate and the quinuclidine nitrogen of the alkaloid. In such complexes the methyl pyruvate is transformed into a half-hydrogenated species which can be adsorbed on the platinum surface and, after hydrogenation, leads to methyl lactate product. The results show that adsorption of the complex leading to (R)-methyl lactate is more favorable than that of the corresponding system yielding (S)-methyl lactate, which may be the key for the enantio-differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号