首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A pebbling move on a graph removes two pebbles at a vertex and adds one pebble at an adjacent vertex. Rubbling is a version of pebbling where an additional move is allowed. In this new move one pebble is removed at vertices v and w adjacent to a vertex u and an extra pebble is added at vertex u. A vertex is reachable from a pebble distribution if it is possible to move a pebble to that vertex using rubbling moves. The rubbling number of a graph is the smallest number m needed to guarantee that any vertex is reachable from any pebble distribution of m pebbles. The optimal rubbling number is the smallest number m needed to guarantee a pebble distribution of m pebbles from which any vertex is reachable. We determine the rubbling and optimal rubbling number of some families of graphs and we show that Graham’s conjecture does not hold for rubbling numbers.  相似文献   

2.
A pebbling move on a graph removes two pebbles at a vertex and adds one pebble at an adjacent vertex. Rubbling is a version of pebbling where an additional move is allowed. In this new move, one pebble each is removed at vertices v and w adjacent to a vertex u, and an extra pebble is added at vertex u. A vertex is reachable from a pebble distribution if it is possible to move a pebble to that vertex using rubbling moves. The rubbling number is the smallest number m needed to guarantee that any vertex is reachable from any pebble distribution of m pebbles. The optimal rubbling number is the smallest number m needed to guarantee a pebble distribution of m pebbles from which any vertex is reachable. We give bounds for rubbling and optimal rubbling numbers. In particular, we find an upper bound for the rubbling number of n-vertex, diameter d graphs, and estimates for the maximum rubbling number of diameter 2 graphs. We also give a sharp upper bound for the optimal rubbling number, and sharp upper and lower bounds in terms of the diameter.  相似文献   

3.
4.
A set S of vertices in a graph H=(V,E) with no isolated vertices is a paired-dominating set of H if every vertex of H is adjacent to at least one vertex in S and if the subgraph induced by S contains a perfect matching. Let G be a permutation graph and π be its corresponding permutation. In this paper we present an O(mn) time algorithm for finding a minimum cardinality paired-dominating set for a permutation graph G with n vertices and m edges.  相似文献   

5.
A graph G is said to be very strongly perfect if for each induced subgraph H of G, each vertex of H belongs to a stable set that meets all maximal cliques of H. Meyniel proved that a graph is perfect if each of its odd cycles with at least five vertices contains at least two chords. Nowadays, such a graph is called a Meyniel graph. We prove that, as conjectured by Meyniel, a graph is very strongly perfect if and only if it is a Meyniel graph. We also design a polynomial-time algorithm which, given a Meyniel graph G and a vertex x of G, finds a stable set that contains x and meets all maximal cliques of G. We shall convert this algorithm into another polynomial-time algorithm which, given a Meyniel graph G, finds an optimal coloring of G, and a largest clique of G. Finally, we shall establish another property, related to perfection, of Meyniel graphs.  相似文献   

6.
A graph G is 2-stratified if its vertex set is partitioned into two nonempty classes (each of which is a stratum or a color class). We color the vertices in one color class red and the other color class blue. Let F be a 2-stratified graph with one fixed blue vertex v specified. We say that F is rooted at v. The F-domination number of a graph G is the minimum number of red vertices of G in a red-blue coloring of the vertices of G such that for every blue vertex v of G, there is a copy of F in G rooted at v. In this paper, we survey recent results on the F-domination number for various 2-stratified graphs F.  相似文献   

7.
We show that a graph G has no houses and no holes if and only if for every connected induced subgraph H of G and every vertex in H, either the vertex is adjacent to all the other vertices in H, or it forms a 2-pair of H with some other vertex in H. As a consequence, there is a simple linear time algorithm to find a 2-pair in HH-free graphs. We also note that the class of Meyniel graphs admits an analogous characterization.  相似文献   

8.
An embedding of a graph G into a hypercube of dimension k is called optimal if the number of vertices of G is greater than 2k−1. A ladder is a special graph in which two paths of the same length are connected in such a way that each vertex of the first one is connected by a path – called a rung – to its corresponding vertex in the second one. We construct an optimal embedding for every ladder with rungs of odd sizes greater than 6 into a dense set of a hypercube.  相似文献   

9.
We prove that, for every positive integer k, there is an integer N such that every 4-connected non-planar graph with at least N vertices has a minor isomorphic to K4,k, the graph obtained from a cycle of length 2k+1 by adding an edge joining every pair of vertices at distance exactly k, or the graph obtained from a cycle of length k by adding two vertices adjacent to each other and to every vertex on the cycle. We also prove a version of this for subdivisions rather than minors, and relax the connectivity to allow 3-cuts with one side planar and of bounded size. We deduce that for every integer k there are only finitely many 3-connected 2-crossing-critical graphs with no subdivision isomorphic to the graph obtained from a cycle of length 2k by joining all pairs of diagonally opposite vertices.  相似文献   

10.
Broadcast domination was introduced by Erwin in 2002, and it is a variant of the standard dominating set problem, such that different vertices can be assigned different domination powers. Broadcast domination assigns an integer power f(v)?0 to each vertex v of a given graph, such that every vertex of the graph is within distance f(v) from some vertex v having f(v)?1. The optimal broadcast domination problem seeks to minimize the sum of the powers assigned to the vertices of the graph. Since the presentation of this problem its computational complexity has been open, and the general belief has been that it might be NP-hard. In this paper, we show that optimal broadcast domination is actually in P, and we give a polynomial time algorithm for solving the problem on arbitrary graphs, using a non-standard approach.  相似文献   

11.
Vertex insertion approximates the crossing number of apex graphs   总被引:1,自引:0,他引:1  
An apex graph is a graph G from which only one vertex v has to be removed to make it planar. We show that the crossing number of such G can be approximated up to a factor of Δ(Gv)⋅d(v)/2 by solving the vertex inserting problem, i.e. inserting a vertex plus incident edges into an optimally chosen planar embedding of a planar graph. Since the latter problem can be solved in polynomial time, this establishes the first polynomial fixed-factor approximation algorithm for the crossing number problem of apex graphs with bounded degree.Furthermore, we extend this result by showing that the optimal solution for inserting multiple edges or vertices into a planar graph also approximates the crossing number of the resulting graph.  相似文献   

12.
t-Pebbling and Extensions   总被引:1,自引:0,他引:1  
Graph pebbling is the study of moving discrete pebbles from certain initial distributions on the vertices of a graph to various target distributions via pebbling moves. A pebbling move removes two pebbles from a vertex and places one pebble on one of its neighbors (losing the other as a toll). For t ≥ 1 the t-pebbling number of a graph is the minimum number of pebbles necessary so that from any initial distribution of them it is possible to move t pebbles to any vertex. We provide the best possible upper bound on the t-pebbling number of a diameter two graph, proving a conjecture of Curtis et al., in the process. We also give a linear time (in the number of edges) algorithm to t-pebble such graphs, as well as a quartic time (in the number of vertices) algorithm to compute the pebbling number of such graphs, improving the best known result of Bekmetjev and Cusack. Furthermore, we show that, for complete graphs, cycles, trees, and cubes, we can allow the target to be any distribution of t pebbles without increasing the corresponding t-pebbling numbers; we conjecture that this behavior holds for all graphs. Finally, we explore fractional and optimal fractional versions of pebbling, proving the fractional pebbling number conjecture of Hurlbert and using linear optimization to reveal results on the optimal fractional pebbling number of vertex-transitive graphs.  相似文献   

13.
We have proved that every 3-connected planar graph G either contains a path on k vertices each of which has degree at most 5k or does not contain any path on k vertices; the bound 5k is the best possible. Moreover, for every connected planar graph H other than a path and for every integer m ≥ 3 there is a 3-connected planar graph G such that each copy of H in G contains a vertex of degree at least m.  相似文献   

14.
15.
For a graph G, a detachment operation at a vertex transforms the graph into a new graph by splitting the vertex into several vertices in such a way that the original graph can be obtained by contracting all the split vertices into a single vertex. A graph obtained from a given graph G by applying detachment operations at several vertices is called a detachment of graph G. While detachment operations may decrease the connectivity of graphs, there are several works on conditions for preserving the connectivity. In this paper, we present necessary and sufficient conditions for a given graph/digraph to have an Eulerian detachment that satisfies a given local edge-connectivity requirement. We also discuss conditions for the detachment to be loopless.  相似文献   

16.
A simple graph G is representable in a real vector space of dimension m, if there is an embedding of the vertex set in the vector space such that the Euclidean distance between any two distinct vertices is one of only two distinct values, α and β, with distance α if the vertices are adjacent and distance β otherwise. The Euclidean representation number of G is the smallest dimension in which G is representable. In this note, we bound the Euclidean representation number of a graph using multiplicities of the eigenvalues of the adjacency matrix. We also give an exact formula for the Euclidean representation number using the main angles of the graph.  相似文献   

17.
Let k be a non-negative integer. A branch vertex of a tree is a vertex of degree at least three. We show two sufficient conditions for a connected claw-free graph to have a spanning tree with a bounded number of branch vertices: (i) A connected claw-free graph has a spanning tree with at most k branch vertices if its independence number is at most 2k + 2. (ii) A connected claw-free graph of order n has a spanning tree with at most one branch vertex if the degree sum of any five independent vertices is at least n ? 2. These conditions are best possible. A related conjecture also is proposed.  相似文献   

18.
《Discrete Mathematics》1986,62(3):261-270
Let G be a graph triangularly imbedded into a surface S, G(m) is the graph constructed from G by replacing each vertex x by m vertices (xx,0), (x, 1), ..., (x, m − 1) and joining two vertices (x, i) and (y, j) by an edge if and only if x and y are joined in G. The main result is that the construction of G(m) is possible whenever n is an odd prime and a well separating cycle (mod m) can be determined.  相似文献   

19.
Consider a graph whose vertices play the role of members of the opposing groups. The edge between two vertices means that these vertices may defend or attack each other. At one time, any attacker may attack only one vertex. Similarly, any defender fights for itself or helps exactly one of its neighbours. If we have a set of defenders that can repel any attack, then we say that the set is secure. Moreover, it is strong if it is also prepared for a raid of one additional foe who can strike anywhere. We show that almost any cubic graph of order n has a minimum strong secure set of cardinality less or equal to n/2 + 1. Moreover, we examine the possibility of an expansion of secure sets and strong secure sets.  相似文献   

20.
A graph chordal if it does not contain any cycle of length greater than three as an induced subgraph. A set of S of vertices of a graph G = (V,E) is independent if not two vertices in S are adjacent, and is dominating if every vertex in V?S is adjacent to some vertex in S. We present a linear algorithm to locate a minimum weight independent dominating set in a chordal graph with 0–1 vertex weights.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号