首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of Electrostatics》2006,64(3-4):194-202
A multi-nozzle electrospray system was developed as a charged droplet source for cleaning a gas contaminated with fine particles. The efficiency of removal of fine particles from the gas can be significantly increased, as compared to uncharged sprays, when the droplets are electrically charged. In the presented experiments, the spray of the droplets of size lower than 100 μm was charged either positively or negatively. Cigarette smoke was used as a source of submicrometer particles. The suppression of the particle concentration was determined after different time intervals of spraying of water. Further improvement in gas cleaning was obtained after charging the smoke particles using a specially designed corona charger. The efficiency of the cleaning process was similar to that obtained for droplets generated by mechanical atomisers with induction charging, but the electrospraying allowed decreasing the water consumption up to about three times.  相似文献   

2.
针对高功率激光装置内部最易产生受激布里渊散射(SBS)效应的大口径取样光栅(BSG)元件,测试了经过化学刻蚀、紫外激光清洗作用处理后,大口径光学元件BSG侧面在355 nm激光辐照下的损伤阈值、损伤形态以及产生的石英颗粒气溶胶对环境污染程度的分析。结果表明:经过化学刻蚀,BSG侧面的损伤阈值提高78%,基本与通光面的损伤阈值相当,而经过紫外激光处理后的损伤阈值提升不高,仅为通光面损伤阈值的56%。侧面对比分析了相同激光能量辐照下样片侧面产生的气溶胶污染状况,结果表明紫外激光处理同样可以提高光学元件侧面产生污染物的阈值,且对光学元件性能没有影响。通过微观形貌和对通光口径影响分析表明,紫外激光清洗处理比化学刻蚀具有更好的安全性和适用性。  相似文献   

3.
针对高功率激光装置内部最易产生受激布里渊散射(SBS)效应的大口径取样光栅(BSG)元件,测试了经过化学刻蚀、紫外激光清洗作用处理后,大口径光学元件BSG侧面在355 nm激光辐照下的损伤阈值、损伤形态以及产生的石英颗粒气溶胶对环境污染程度的分析。结果表明:经过化学刻蚀,BSG侧面的损伤阈值提高78%,基本与通光面的损伤阈值相当,而经过紫外激光处理后的损伤阈值提升不高,仅为通光面损伤阈值的56%。侧面对比分析了相同激光能量辐照下样片侧面产生的气溶胶污染状况,结果表明紫外激光处理同样可以提高光学元件侧面产生污染物的阈值,且对光学元件性能没有影响。通过微观形貌和对通光口径影响分析表明,紫外激光清洗处理比化学刻蚀具有更好的安全性和适用性。  相似文献   

4.
In the high power laser facility, surface contaminations on the optics will worsen the laser beam quality and damage the optics. Particle and grease contaminations are two of the usual contaminations on the surface of optics. In this work, the 1064-nm laser induced plasma shockwave cleaning is utilized to remove SiO2 particle contaminations on the K9 glass surface. The results indicate the removal ratio can reach above 95%. The effects of parameters (particle position, laser gap distance and laser energy) on the cleaning efficiency have been studied in the case of single pulse laser cleaning. In addition, CO2 laser (10.6 μm) is utilized to remove the dimethylsilicone oil contaminations on the gold-coated K9 glass surface. The results show that CO2 laser can effectively remove the dimethylsilicone oil by properly controlling the laser parameters. The cleaned area increases with the increased laser power or irradiation time when the other parameters are constant.  相似文献   

5.
研究高功率激光装置光传输管道内部洁净度变化规律,分析其对内部重要光学元件光学性能的影响规律,提出污染控制措施。对光传输管道内部的气溶胶进行采样,并利用空气品质分析仪及扫描电镜对其进行分析,得到光传输管道内部洁净度变化规律和污染源;采用内部放置透射膜元件的方法,研究洁净度等级水平对透射膜的微观结构和透射率的影响,并利用1-on-1的测试方式进行透射膜元件的损伤阈值测试。研究结果表明:光传输管道内部的洁净度在激光辐照后迅速上升至万级水平,透射膜元件在此环境下其透过率严重下降,下降幅度为2.5%,且表面微观形貌发生变化。光学透射薄膜表面损伤阈值随表面污染水平呈现线性下降规律,最大下降幅度约为10%。污染监测和成分分析结果表明管道内部灰尘及杂散光或者鬼光束辐照金属产生的等离子体是管道内污染的主要源头,在此基础上提出了正压密封保持的技术手段确保内部光学表面洁净度水平,延长使用寿命。  相似文献   

6.
研究高功率激光装置光传输管道内部洁净度变化规律,分析其对内部重要光学元件光学性能的影响规律,提出污染控制措施。对光传输管道内部的气溶胶进行采样,并利用空气品质分析仪及扫描电镜对其进行分析,得到光传输管道内部洁净度变化规律和污染源;采用内部放置透射膜元件的方法,研究洁净度等级水平对透射膜的微观结构和透射率的影响,并利用"1-on-1"的测试方式进行透射膜元件的损伤阈值测试。研究结果表明:光传输管道内部的洁净度在激光辐照后迅速上升至万级水平,透射膜元件在此环境下其透过率严重下降,下降幅度为2.5%,且表面微观形貌发生变化。光学透射薄膜表面损伤阈值随表面污染水平呈现线性下降规律,最大下降幅度约为10%。污染监测和成分分析结果表明管道内部灰尘及杂散光或者鬼光束辐照金属产生的等离子体是管道内污染的主要源头,在此基础上提出了正压密封保持的技术手段确保内部光学表面洁净度水平,延长使用寿命。  相似文献   

7.
采用微分干涉显微镜、扫描电镜和聚焦离子束观察了偏振分光膜损伤的形貌,从损伤机理出发,研究了清洗对偏振分光膜损伤阈值的影响。结果表明:清洗能有效去除表面杂质,清洗质量越好,基板上的杂质尺寸越小,杂质密度也越小,相应的偏振分光膜S光的损伤阈值越高;清洗能有效去除基板表面的纳米吸收中心,吸收性杂质分布密度越小,吸收峰越低,P光的损伤阈值越高。  相似文献   

8.
This paper is to investigate the mechanisms of micro-scale particle removal by surface wave, which was induced by a short pulse laser in a cleaning process. The authors analyzed the adhesive forces of particles on substrate surface and the clearance force produced by surface wave in laser cleaning. The physical model of particle removal by laser-induced surface wave was established to predict the removal area and the processing conditions of laser cleaning. In this research, a KrF excimer laser was applied to irradiate 304 stainless steel specimen distributed with copper particles to generate surface wave for copper particle removal. Considering that a time-varying and uniformly distributed heat source irradiates on material surface with thermao-elastic behavior, the displacement and acceleration of substrate induced by a pulsed laser were solved by an uncoupled thermal–mechanical analysis based on the finite element method. The processing parameters such as laser energy, laser spot size are discussed, respectively. A series of laser cleaning experiments were designed to compare with computation results. The results show that the removal area by surface wave beyond the laser spot increases with the laser energy and that, the surface acceleration decreases with the increase of the laser spot size.  相似文献   

9.
微杂质污染一直是影响精密器件制造质量和使用寿命的关键因素之一.对于微纳米杂质颗粒用传统的清洗方式(超声清洗等)难以去除,而激光等离子体冲击波具有高压特性,可以实现纳米量级杂质颗粒的去除,具有很大的应用潜力.本文主要研究了激光等离子体去除微纳米颗粒过程中的热力学效应:实验研究了激光等离子体在不同脉冲数下对Si基底上Al颗粒去除后的颗粒形貌变化,发现大颗粒会发生破碎而转变成小颗粒,一些颗粒达到熔点后发生相变形成光滑球体,这源于等离子体的热力学效应共同作用的结果.为了研究微粒物态转化过程,基于冲击波传播理论研究,得到冲击波压强与温度特性的演化规律;同时,利用有限元模拟方式研究激光等离子冲击波压强和温度对微粒作用规律,得到了颗粒内随时间变化的应力分布和温度分布,并在此基础上得到等离子体对颗粒的热力学作用机制.  相似文献   

10.
The efficiency of the "steam laser cleaning" process is examined. For the investigation of the physics of particle removal from the particularly interesting surface of silicon we have deposited well-characterized spherical polymer and silica particles of different diameters ranging from several tens to hundreds of nanometers on commercial wafers. As a result of our systematic study we observe a sharp threshold of the steam cleaning process at 110 mJ/cm2 (5=532 nm, FWHM=7 ns) which is independent of the size (for particles with diameters as small as 60 nm) and material of the particles. An efficiency above 90% after 20 cleaning steps is reached at a laser fluence of 170 mJ/cm2. Experiments with irregularly shaped alumina particles exhibit the same threshold as for spherical particles.  相似文献   

11.
The laser shock cleaning (LSC) method has recently attracted substantial attention since it can remove micro/nano-scale contaminant particles from a solid surface without direct exposure of the surface to laser irradiation. However, despite the importance of the particle detachment and redeposition mechanisms in the LSC process, the behavior of the particles during the cleaning process has never been analyzed experimentally. In this work, the motion of the micrometer-scale particles detached by a laser-induced plasma/shock wave is visualized by a photoluminescence imaging technique. The technique yields time-resolved particle trajectories under typical conditions of the LSC process, with and without a gas jet blowing. Discussions are made on the behavior of the detached particles and redeposition mechanisms.  相似文献   

12.
Abstract

Despite the continually improving efficiency of the fabrication process used to manufacture the organic light emitting diode (OLED) emitter layer, which uses a shadow mask, a method for the cleaning and recycling of the shadow mask is still lacking. One of the main reasons for this is the absence of a quantitative/qualitative method to analyze the cleaning solution using simple in situ measurements. Recently, Raman analysis has become popular because of its convenience, ease of use, and suitability for in situ measurements. Thus, Raman spectroscopy has the capacity to analyze the solution used for cleaning shadow masks. A particular advantage of this approach is that it can detect organic contaminants in the cleaning solution, which are caused by the residue that remains on the shadow mask after the OLED emitter layer fabrication process. Raman spectroscopy has an advantage for analyzing solution condition and contaminant detection between the cleaning solution and organic chemical by using the Raman peak and fluorescence integration method.  相似文献   

13.
Different colloidal particle characterization methods are examined for their suitability to determine the particle size distribution of particles extracted from steels. Microalloyed steels are dissolved to extract niobium and titanium carbonitride particles that are important for the mechanical properties of these steels. Such particles have sizes ranging from several nanometers to hundreds of nanometers depending on the precipitation stage during the thermomechanically controlled rolling process. The size distribution of the particles is analyzed by dynamic light scattering (DLS), analytical ultracentrifugation (AUC), and hollow fiber flow field-flow fractionation (HF5) and compared to data obtained for reference particles as well as data from electron microscopy, the standard sizing technique used in metallurgy today. AUC and HF5 provide high-quality size distributions, average over large particle numbers that enables statistical analysis, and yield useful insights for alloy design; however, DLS fails due to a lack of resolution. Important aspects in the conversion and comparison of size distributions obtained for broadly distributed particle systems with different measurement principles and the role of surfactants used in sample preparation are discussed.  相似文献   

14.
Failures of electrochemical cells caused by internal shorts still are an important issue to be faced by the cell manufacturers and their customers. A major cause for internal shorts are contaminated electrode foils. These contaminations have to be detected securely via a non-destructive inspection technique integrated into the electrode manufacturing process. While optical detection already is state of the art, infrared detection of particles finds a new field of application in the battery electrode manufacturing process. This work presents two approaches focusing on electrode inspection by electromagnetic radiation (visible and infrared). Copper foils with a carbon based coating were intentionally contaminated by slivers of aluminum and copper as well as by abraded coating particles. Optical excitation by a flash and a luminescent lamp was applied at different angles in order to detect the reflected visible radiation. A laser impulse was used to heat up the specimen for infrared inspection. Both approaches resulted in setups providing a high contrast between contaminations and the coated electrode foil. It is shown that infrared detection offers a higher security thanks to its reliance on absorbance and emissivity instead of reflectivity as it is used for optical detection. Infrared Detection offers a potential since it is hardly influenced by the particle’s shape and orientation and the electrode’s waviness.  相似文献   

15.
In this paper a new laser-based technique for the removal of nanoparticles from silicon wafers, called matrix laser cleaning, is introduced. In contrast to the already existing technique dry laser cleaning damages of the substrate can be avoided. Furthermore no liquids are used, avoiding problems that occur, e.g. in steam laser cleaning and other wet cleaning techniques. We show that damage free particle removal of polystyrene particles with diameters of at least down to 50 nm is possible with a cleaning efficiency very close to 100% within a single shot experiment. Furthermore the cleaning threshold is independent of the particle size. PACS 64.70.Hz; 68.43.Vx; 81.65.Cf  相似文献   

16.
In order to improve nano-scale phase change memory performance, a super-clean interface should be obtained after chemical mechanical polishing (CMP) of Ge2Sb2Te5 phase change films. We use reactive ion etching (RIE) as the cleaning method. The cleaning effect is analysed by scanning electron microscopy and an energy dispersive spectrometer. The results show that particle residue on the surface has been removed. Meanwhile, Ge2Sb2Te5 material stoichiometric content ratios are unchanged. After the top electrode is deposited, currentvoltage characteristics test demonstrates that the set threshold voltage is reduced from 13 V to 2.7V and the threshold current from 0.1 mA to 0.025 mA. Furthermore, we analyse the RIE cleaning principle and compare it with the ultrasonic method.  相似文献   

17.
韩燕龙  贾富国  曾勇  王爱芳 《物理学报》2015,64(23):234502-234502
为探讨受碾状态颗粒的稳定流动, 在碾辊轴与筛筒组成的受碾区域内, 建立了轴向运动的颗粒流离散元物理模型. 研究结果表明: 受碾区域内各颗粒沿轴向运动能力的差异造成了颗粒流密度不均匀; 颗粒与筛筒间的静摩擦系数影响颗粒轴向流动的形态、速率及集散程度, 受碾区域内单层颗粒的轴向均方偏差与流动时间的平方正相关, 属于“super”扩散; 整体分析受碾区域发现, 颗粒的轴向平均速度沿轴向坐标逐渐增大, 而颗粒的三轴合成平均速度沿轴向坐标逐渐降低; 受碾区域内各轴向位置处颗粒运动的剧烈程度不同, 沿轴向坐标颗粒的波动速度平方呈现先增大后降低而后又增大的趋势; 单颗粒的碰撞总能量损失能谱也表明了颗粒运动程度不同, 即轴向流动时在受碾区域的前半段碰撞剧烈, 能量损失多, 在后半段碰撞程度弱, 能量损失较少. 通过对受碾区域内颗粒流动的数值模拟分析, 明晰了颗粒在受碾条件下稳定流动特性, 有益于碾磨工业对产品品质控制及设备参数优化的研究.  相似文献   

18.
We propose an experimental approach which allows the characterization of the dynamics of the ejected particles in dry laser cleaning. Submicron silica particles on silicon substrates were illuminated by single nanosecond laser pulses at fluences which lead to particle removal. Time- and space-resolved scattered signal detection was demonstrated as a suitable technique to perform time-of-flight analyses of the ejected particles. The determination of the resulting detachment velocity at the particle removal threshold fluence contributes to a better understanding of mechanisms involved in dry laser cleaning. In particular, the present study evidences that the removal efficiency of the laser process is not based on the thermal expansion of materials. PACS 42.62.b; 42.15.Eq  相似文献   

19.
Laser-assisted particle removal, a method of cleaning nano- to micro-scale particles from surfaces, was modeled using molecular dynamics. A two-dimensional molecular model consisting of substrate, particle, and adsorbed fluid was used. In order to obtain statistical accuracy of cleaning efficiencies, over 1200 particle-removal simulations were conducted. The effects of fluid thickness and substrate temperature were both considered, and good qualitative agreement with experimental results was obtained. The molecular dynamics approach is shown to be an effective way to study these systems. PACS 81.65.Cf; 79.20.Ds  相似文献   

20.
非球形椭球粒子参数变化对光偏振特性的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
张肃  彭杰  战俊彤  付强  段锦  姜会林 《物理学报》2016,65(6):64205-064205
针对自然界中多数沙尘、烟煤粒子的非球形问题, 在球形粒子偏振特性的基础上, 进一步研究非球形椭球粒子的折射率、有效半径、粒子形状等参数变化对光偏振特性的影响, 采用基于T矩阵的非球形粒子仿真方法, 模拟非偏振光经椭球粒子传输后光的偏振特性及其与球形粒子间的差异, 并以实际沙尘、海洋、烟煤三种气溶胶粒子为例说明结果的正确性. 结果表明: 当折射率实部越小, 虚部越大时, 球形粒子与非球形粒子的偏振差异越不明显; 当粒子有效半径增加时, 球形粒子偏振度的变化比非球形粒子更为明显, 且最大值分别出现在散射角为150°和120°的位置; 当粒子形状不同时, 不同形状椭球及球形粒子的差异在散射角小于60° 时并不明显, 且当椭球粒子纵横比互为倒数时, 两种粒子的偏振特性近似相同. 通过以上分析可知, 在光传输过程中, 椭球粒子多数情况下无法被近似为球形粒子进行计算.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号