首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possibility of performing logical operations at the molecular level is being actively investigated at present with the aim of developing molecular logic gates, which can be used in information technologies. In this minireview, the design algorithm of molecular logic gates is considered and the requirements on molecular systems for use as logic gates are specified. Examples of molecular logic gates performing different logical operations are given. Attention is focused on all-photonic molecular logic gates, in which light is used as an input signal for transferring the system from one state to another and for reading the output signal by absorption or luminescence. In addition, optoelectronic devices with light as the input signal and electric current as the output signal are briefly discussed.  相似文献   

2.
Computers have become smarter, smaller, and more efficient due to the downscaling of silicon‐based components. Top‐down miniaturisation of silicon‐based computer components is fast reaching its limitations because of physical constraints and economical non‐feasibility. Therefore, the possibility of a bottom‐up approach that uses molecules to build nano‐sized devices has been initiated. As a result, molecular logic gates based on chemical inputs and measurable optical outputs have captured significant attention very recently. In addition, it would be interesting if such molecular logic gates could be developed by making use of ion sensors, which can give significantly sensitive output information. This review provides a brief introduction to anion receptors, molecular logic gates, a comprehensive review on describing recent advances and progress on development of ion receptors for molecular logic gates, and a brief idea about the application of molecular logic gates.  相似文献   

3.
Designing molecular logic gates to operate programmably for molecular diagnostics in molecular computing still remains challenging. Here, we designed a novel linear DNA logic gates for microRNA analysis based on strand displacement and fluorescence resonance energy transfer (FRET). Two labeled strands closed each other produce to FRET through hybridization with a complementary strand to form a basic work unit of logic gate. Two indicators of heart failure (microRNA-195 and microRNA-21) were selected as the logic inputs and the fluorescence mode was used as the logic output. We have demonstrated that the molecular logic gate mechanism worked well with the construction of YES and AND gates.  相似文献   

4.
DNA-based photonic logic gates: AND,NAND, and INHIBIT   总被引:4,自引:0,他引:4  
Conventional microprocessors use elementary logic gates to perform complex computational tasks. Mimicking such computational processes using purely molecular systems has been limited in most cases by the lack of design generality or potential addressability of existing molecular logic gates. Herein we report that by employing the universal recognition properties of DNA simple photonic logic gates can be created that are capable of AND, NAND, and INHIBIT logic operations.  相似文献   

5.
One of the fundamental goals of molecular computing is to reproduce the tenets of digital logic, such as component modularity and hierarchical circuit design. An important step toward this goal is the creation of molecular logic gates that can be rationally wired into multi-level circuits. Here we report the design and functional characterization of a complete set of modular DNA-based Boolean logic gates (AND, OR, and AND-NOT) and further demonstrate their wiring into a three-level circuit that exhibits Boolean XOR (exclusive OR) function. The approach is based on solid-supported DNA logic gates that are designed to operate with single-stranded DNA inputs and outputs. Since the solution-phase serves as the communication medium between gates, circuit wiring can be achieved by designating the DNA output of one gate as the input to another. Solid-supported logic gates provide enhanced gate modularity versus solution-phase systems by significantly simplifying the task of choosing appropriate DNA input and output sequences used in the construction of multi-level circuits. The molecular logic gates and circuits reported here were characterized by coupling DNA outputs to a single-input REPORT gate and monitoring the resulting fluorescent output signals.  相似文献   

6.
Molecular and supramolecular logic gates are candidates for computation at the nanoscale level. Nowadays all common logic operations can be mimicked with molecular devices based on chemical approaches. One step further towards molecular systems with increased logic capabilities is the addition or subtraction of binary digits. This Minireview describes recent developments to attain this goal, including bioinspired systems based on DNA and enzymes. Furthermore, chemical molecular logic gates are discussed and compared critically with regard to alternative concepts.  相似文献   

7.
Modern computer processors are based on semiconductor logic gates connected to each other in complex circuits. This study contributes to the development of a new class of connectable logic gates made of DNA in which the transfer of oligonucleotide fragments as input/output signals occurs upon hybridization of DNA sequences. The DNA strands responsible for a logic function form associates containing immobile DNA four‐way junction structures when the signal is high and dissociate into separate strands when the signal is low. A basic set of logic gates (NOT, AND, and OR) was designed. Two NOT gates, two AND gates, and an OR gate were connected in a network that corresponds to an XOR logic function. The design of the logic gates presented here may contribute to the development of the first biocompatible molecular computer.  相似文献   

8.
Self‐assembled plasmonic logic gates that read DNA molecules as input and return plasmonic chiroptical signals as outputs are reported. Such logic gates are achieved on a DNA‐based platform that logically regulate the conformation of a chiral plasmonic nanostructure, upon specific input DNA strands and internal computing units. With systematical designs, a complete set of Boolean logical gates are realized. Intriguingly, the logic gates could be endowed with adaptiveness, so they can autonomously alter their logics when the environment changes. As a demonstration, a logic gate that performs AND function at body temperature while OR function at cold storage temperature is constructed. In addition, the plasmonic chiroptical output has three distinctive states, which makes a three‐state molecular logic gate readily achievable on this platform. Such DNA‐based plasmonic logic gates are envisioned to execute more complex tasks giving these unique characteristics.  相似文献   

9.
Self-assembled plasmonic logic gates that read DNA molecules as input and return plasmonic chiroptical signals as outputs are reported. Such logic gates are achieved on a DNA-based platform that logically regulate the conformation of a chiral plasmonic nanostructure, upon specific input DNA strands and internal computing units. With systematical designs, a complete set of Boolean logical gates are realized. Intriguingly, the logic gates could be endowed with adaptiveness, so they can autonomously alter their logics when the environment changes. As a demonstration, a logic gate that performs AND function at body temperature while OR function at cold storage temperature is constructed. In addition, the plasmonic chiroptical output has three distinctive states, which makes a three-state molecular logic gate readily achievable on this platform. Such DNA-based plasmonic logic gates are envisioned to execute more complex tasks giving these unique characteristics.  相似文献   

10.
A complete set (YES, NOT, AND, and ANDNOT) of molecular scale logic gates based on ligase deoxyribozymes was constructed. The activity of these gates was visualized through the formation of cascades with downstream phosphodieseterase YES gates, which performed fluorogenic cleavage.  相似文献   

11.
Using ab initio density functional theory (DFT) calculations, we demonstrate two molecular OR gates that are able to process binary signals encoded as molecular potentials. Thus, the possibility to implement logic gates of <1 nm is demonstrated. The advantage of this approach to post‐microelectronics technologies is the tremendous low‐power dissipation, the small feature size of molecular devices, and the compatible nature of input and output signals that would allow the implementation of complex logic. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

12.
Deoxyribozyme-based logic gates   总被引:14,自引:0,他引:14  
We report herein a set of deoxyribozyme-based logic gates capable of generating any Boolean function. We construct basic NOT and AND gates, followed by the more complex XOR gate. These gates were constructed through a modular design that combines molecular beacon stem-loops with hammerhead-type deoxyribozymes. Importantly, as the gates have oligonucleotides as both inputs and output, they open the possibility of communication between various computation elements in solution. The operation of these gates is conveniently connected to a fluorescent readout.  相似文献   

13.
Temperature-driven fluorescent NOT logic is demonstrated by exploiting predissociation in a 1,3,5-trisubstituted Δ2-pyrazoline on its own and when grafted onto silica microparticles. Related Δ2-pyrazolines become proton-driven YES and NOT logic gates on the basis of fluorescent photoinduced electron transfer (PET) switches. Additional PASS 1 and YES+PASS 1 logic gates on silica are also demonstrated within the same family. Beside these small-molecule systems, a polymeric molecular thermometer based on a benzofurazan-derivatized N-isopropylacrylamide copolymer is attached to silica to produce temperature-driven fluorescent YES logic.  相似文献   

14.
分子梭在分子开关、分子逻辑门、信息存储等领域有着潜在的应用价值,是超分子化学领域的研究热点之一。本文综述了光驱动分子梭的研究进展:重点举例介绍了荧光光谱识别法和圆二色光谱识别法这两种识别光驱动分子梭位置状态的方法;阐述了构建光驱动轮烷分子梭的新型方法学,包括光驱动环糊精[2]轮烷和[1]轮烷分子梭的定向合成,举例介绍了光间接驱动的轮烷分子梭,以及光驱动[3]轮烷型分子梭和分子梭聚合物;举例说明了光驱动分子梭的功能性应用,用光驱动分子梭来模拟分子水平的逻辑门,研究光驱动分子梭体系中的能量传递机理,以及非溶液态的光驱动分子梭;并对分子梭今后的发展做了展望。  相似文献   

15.
A molecular logic gate is a basic element and plays a key role in molecular computing. Herein, we have developed a label-free and enzyme-free three-input visual majority logic gate which is realized for the first time according to DNA hybridization only, without DNA replacement and enzyme catalysis. Furthermore, a one-vote veto function was integrated into the DNA-based majority logic gate, in which one input has priority over other inputs. The developed system can also implement multiple basic and cascade logic gates.  相似文献   

16.
Despite the widespread use of quantum dots (QDs) for biosensing and bioimaging, QD‐based bio‐interfaceable and reconfigurable molecular computing systems have not yet been realized. DNA‐programmed dynamic assembly of multi‐color QDs is presented for the construction of a new class of fluorescence resonance energy transfer (FRET)‐based QD computing systems. A complete set of seven elementary logic gates (OR, AND, NOR, NAND, INH, XOR, XNOR) are realized using a series of binary and ternary QD complexes operated by strand displacement reactions. The integration of different logic gates into a half‐adder circuit for molecular computation is also demonstrated. This strategy is quite versatile and straightforward for logical operations and would pave the way for QD‐biocomputing‐based intelligent molecular diagnostics.  相似文献   

17.
We report supramolecular AND logic gates based on host-guest complexation between acid-labile acyclic cucurbit[n]uril(CB[n]) molecular container and Na Cl O-responsive dye. Supramolecular AND logic gate is turned on due to acid-triggered degradation of molecular container and the release of the dye, followed by Na Cl O-induced fluorescence “switch on” effect of the dye. The reason for AND molecular logic gate is discovered to be the combination of oxidation inhibition and fluorescence “switch of...  相似文献   

18.
分子器件具有尺寸小、设计合成可控、存储量大、反应速度快、人工智能等诸多优点,是当今化学、物理和材料等领域研究最为重要的一个交叉领域.综述了近些年来分子逻辑器件领域的研究进展.介绍了各种类型的分子逻辑门、半(加)减法器、分子逻辑线路以及DNA分子和固态分子计算.最后提出了分子器件存在的问题并展望了其应用前景.  相似文献   

19.
以DNA为模板,合成了具有荧光性质的银纳米簇(DNA-Ag NCs),利用荧光光谱、紫外光谱和红外光谱等手段对其进行了表征.基于DNA-Ag NCs与离子相互作用时产生的荧光变化可实现对离子浓度的检测.实验结果表明,在最佳实验条件下,Ni2+及Hg2+的浓度与DNA-Ag NCs荧光强度呈线性关系;并验证了该荧光探针用于检测自来水样品中汞离子和镍离子的实用性.由于以DNA为模板的DNA-Ag NCs能够响应多种刺激,如Ni2+,S2-,Hg2+和p H等,利用相应的荧光强度可构建多输入的DNA-Ag NCs逻辑门及其组合逻辑门.当荧光输出强度(Ioutput)>初始荧光强度(Iorigin)时,设定输出为1,采用各种刺激及其组合作为输入,构建了YES,INH和组合的NOR与INH逻辑门.而只有当Ioutput≥Iorigin时定义为输出为1,可建立NOT,NOR,组合的IMP加上NOR...  相似文献   

20.
DNA-based computers can potentially analyze complex sets of biological markers, thereby advancing diagnostics and the treatment of diseases. Despite extensive efforts, DNA processors have not yet been developed due, in part, to limitations in the ability to integrate available logic gates into circuits. We have designed a NAND gate, which is one of the functionally complete set of logic connectives. The gate's design avoids stem-loop-folded DNA fragments, and is capable of reusable operations in RNase H-containing buffer. The output of the gate can be translated into RNA-cleaving activity or a fluorescent signal produced either by a deoxyribozyme or a molecular beacon probe. Furthermore, three NAND-gate-forming DNA strands were crosslinked by click chemistry and purified in a simple procedure that allowed ≈1013 gates to be manufactured in 16 h, with a hands-on time of about 30 min. Two NAND gates can be joined into one association that performs a new logic function simply by adding a DNA linker strand. Approaches developed in this work could contribute to the development of biocompatible DNA logic circuits for biotechnological and medical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号