首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Infrared soft laser desorption/ionization was performed using a 2.94 µm Er : YAG laser and a commercial reflectron time-of-flight mass spectrometer. The instrument was modified so that a 337 nm nitrogen laser could be used concurrently with the IR laser to interrogate samples. Matrix-assisted laser desorption/ionization (MALDI), laser desorption/ionization and desorption/ionization on silicon with UV and IR lasers were compared. Various target materials were tested for IR soft desorption ionization, including stainless steel, aluminum, copper, silicon, porous silicon and polyethylene. Silicon surfaces gave the best performance in terms of signal level and low-mass interference. The internal energy resultant of the desorption/ionization was assessed using the easily fragmented vitamin B12 molecule. IR ionization produced more analyte fragmentation than UV-MALDI analysis. Fragmentation from matrix-free IR desorption from silicon was comparable to that from IR-MALDI. The results are interpreted as soft laser desorption and ionization resulting from the absorption of the IR laser energy by the analyte and associated solvent molecules. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
A gold (Au) capillary has higher thermal conductivity than a stainless steel capillary and can withstand capillary over-heating induced by high CO(2) laser irradiation (over 2.5 W) better than a stainless steel capillary. For this study, a laser spray using an Au capillary was applied for the detection of sugars. The signal of cationized compounds [M+Na](+) can be detected with higher sensitivity than with conventional laser sprays using high laser power (over 2.7 W). Using 3.5 W of laser power, the signal intensity is 15 times higher than the maximum value with stainless steel (2.3 W) in a 10(-5) M maltose aqueous solution. It is considered that almost all the water molecules evaporate by laser irradiation, which is impossible to achieve using a stainless steel capillary.  相似文献   

3.
Laser-induced breakdown spectroscopy of particles ejected by optical catapulting is discussed for the first time. For this purpose, materials deposited on a substrate were ejected and transported from the surface in the form of a solid aerosol by optical catapulting using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser at 1064 nm. A Q-switched Nd:YAG laser at 532 nm was used for chemical characterization of the particles by laser-induced breakdown spectroscopy. Both lasers were synchronized in order to perform suitable spectral detection. The optical catapulting was optimized and evaluated using aluminum silicate particles, nickel spheres, and quartz and stainless steel particles. Experimental parameters such as the interpulse delay time, the sampling distance, the laser fluence, the sampling rate and the particle size have been studied. A correlation between these parameters and the particle size is reported and discussed.  相似文献   

4.
以滑移-溶解-再钝化模型为基础,推导出应力腐蚀裂纹扩展速率与裂尖应变速率和电位之间的理论公式.计算表明,在裂纹扩展速率与裂尖应变速率的关系曲线中有两个特征区域.裂纹扩展速率在区域I随裂尖应变速率增加而增大,而在区域II不随裂尖应变速率的改变而变化.用慢应变速率拉伸技术(SSRT)测量了304L不锈钢的裂纹增长速率.当电位控制在区域II的阳极区时,理论计算的裂纹扩展速率与实验得到的结果比较吻合.  相似文献   

5.
The effect of the notch sharpening on the fracture toughness measured under Linear Elastic Fracture Mechanics (LEFM), Elastic-Plastic Fracture Mechanics (EPFM) and Post-Yielding Fracture Mechanics (PYFM) approaches has been evaluated. Bulk and film specimens of an ethylene-propylene block copolymer have been analyzed. The samples for fracture characterization were sharpened using a steel razor blade and the femtosecond laser ablation technique. Both notching techniques give rise to crack tip radii of the very same size. The fracture toughness of the specimens sharpened via femtolaser were ∼10%, ∼75% and ∼90% lower than that of the specimens sharpened via razor blade when determined with the help of LEFM, the EPFM approach as the multiple specimen method, and by the Essential Work of Fracture, respectively. Both in the bulk samples as in the films, the presence of plastic deformation, either large or small, occurring ahead of the crack tip during the sharpening seems to be the reason for the difference in the fracture values.  相似文献   

6.
A single droplet generator was coupled with a rotating ball inlet matrix-assisted laser desorption/ionization (MALDI) time of flight (TOF) mass spectrometer. Single droplets with 100 picoliter volume were ejected by a piezoelectric-actuated droplet generator and deposited onto a matrix-coated rotating stainless steel ball at atmospheric pressure. The single droplet deposit was transported to the vacuum side of the instrument where ionization was accomplished using a UV pulsed laser. Using this on-line interface, it was possible to obtain protonated molecule signal from as little as 10 fmol analyte.  相似文献   

7.
In laser spray, the tip of an electrospray capillary is irradiated with a continuous CO(2) laser beam. Here, we report results from a modified laser spray method that employs a relatively low laser irradiance level. With a laser power of approximately 2 W and a focal spot size ( approximately 0.3 mm), which covered the entire front surface of the electrospray capillary, the irradiance was approximately 3 x 10(3) W/cm(2). This resulted in a quiescent and smooth vaporization of aqueous solutions. This "evaporation-mode" laser spray method yielded the best results so far obtained in our laboratory with laser-irradiated electrospray, producing higher and more stable signals. The method was applied to the analysis of aqueous solutions of lysozyme and myoglobin. Mass spectra were obtained as a function of laser power from 0 W (electrospray) to approximately 2 W. The spray generated at the tip of the stainless steel capillary was observed with a CCD camera. With increase of laser power, the droplets in the spray became finer and the Taylor cone became progressively smaller. The strongest ion signals were recorded when the sample solution protruded only slightly from the tip of the capillary. A broadening of the lysozyme charge-state distribution, attributable to protein unfolding, was observed with a laser power of 2 W. No denaturation of myoglobin took place up to a laser power of 1.6 W. However, a sudden onset of denaturation was observed at 1.8 W as a broadening of the myoglobin charge distribution and the appearance of apo-myoglobin peaks. These findings demonstrate that laser spray is capable of dissociating the noncovalent complexes selectively without breaking covalent bonds.  相似文献   

8.
Tapered stainless steel spray tips for sheathless microelectrospray ionization (microESI) have been developed. The fabrication procedure for the tapered stainless steel tips was optimized using an electropolishing technique followed by removal of the burr. Using the tip as the microESI emitter, a stable ESI spray was obtained at a flow rate of 20 nL/min. The sensitivity of the microESI system was almost two orders greater than that of the conventional ion spray system. The tip was highly stable, and was successfully used for over 1000 h. Moreover, these stainless steel tips were suitable for use with sheathless capillary electrophoresis/mass spectrometry (CE/MS) and capillary liquid chromatography/mass spectrometry (LC/MS) for routine analysis in proteomic and pharmaceutical applications.  相似文献   

9.
Morphology effects induced during interaction of μs- (Transversely Excited Atmospheric (TEA) CO2 laser) or ns- (HF laser) pulses with titanium nitride (TiN) coating, deposited on austenitic stainless steel AISI 316, were studied. Experiments were carried out in regime of focused laser beam in air at atmospheric pressure. The used laser fluences were found to be sufficient for inducing intensive surface modifications of the target. The energy absorbed from the CO2 as well as HF laser beam is mainly converted into thermal energy, causing different effects like ablation, appearance of hydrodynamic features, etc. Morphology characteristics obtained during ns-pulses irradiation (HF laser) were different to those initiated by μs-pulses (TEA CO2 laser). The changes on the target surface in form of massive resolidifed droplets and crown-like structures were observed only for ns- (HF laser) pulses. It was found that these effects are a consequence of higher temperature and better coupling of the HF laser radiation with the target. Recent investigations of ps-Nd:YAG laser interaction with the same TiN coating showed that morphology picture is quite different including the reduction of thermal effect. The article is published in the original.  相似文献   

10.
Deformation distribution within the specimen beneath the thermomechanical analysis (TMA) probe, found by using the finite element method (FEM), depends mainly on penetration depth, specimen thickness and diameter as well as on radius of the probe tip when the Poisson’s ratio influences it just slightly. For standard radius of the tip Ro=1 mm, most deformation is distributed in a material layer up to 0.5 mm thick independently on elastic modulus of a polymer at a glassy state. It is caused by the fact that maximal penetration depth for the polymers usually equals to about 0.05 mm. Because of this, the contact surface area is less than 0.17 mm2 for the standard radius of the tip. This evidences that predominantly the specimen volume equal to  mm2 (depth×area) is tested by the TMA at compression mode. For Ro=5 mm is tested the layer 2.5 mm thick. This makes possible to evaluate the material properties in the zone of different thickness depending on radius of the tip.  相似文献   

11.
Corrosion resistance of stainless steel and Zn plated steel can be improved by a chromium-free environmentally friendly chemical solution deposition method. Precursor solutions were prepared from tetraethoxysilane with polymer, and were deposited on stainless steel, Zn plated steel and aluminum alloy by dip coating, followed by heat treatment. Addition of polymer to the precursor solution proved very effective in preparing films free from cracks on stainless steel and aluminum alloy substrates. The corrosion resistance was greatly improved by the resulting sub-micron thick silica-polymer hybrid film coatings on stainless steel and on Zn plated steel prepared at 200°C. The hardness of aluminum alloy coated with silica-PMMA hybrid film was improved by 7% over uncoated alloy.  相似文献   

12.
The practice of laser desorption/ionization (LDI) mass spectrometry continues to evolve. In the most commonly adopted manifestation of LDI, matrix assisted LDI, attention continues to be directed towards novel sample application strategies and modifications to the sample plate. Specifically, researchers continue to explore adaptations to the conventional, stainless steel sample plate that is the centerpiece of conventional LDI. Numerous variants of LDI‐MS have been reported based on modifications of the plate surface, but none of these is widely adopted, either by end‐users or by instrument manufacturers. Further, at this time, advances in surface engineering have had only modest impact on day‐to‐day operation. In this article, we review and discuss some of the numerous, but scattered reports on novel LDI strategies with an emphasis on modified sample support substrates and plates. We discuss and highlight innovations that have the potential to markedly enhance the utility of LDI‐MS.  相似文献   

13.
The reaction scheme of ammonia synthesis in the ECR plasma apparatus teas investigated from both identifications of the species in the plasmas and the adsorbed species on the surface of a steel substrate placed in the plasmas. The adsorbed species were considerably different when different kinds of plasmas are used. NH, species were adsorbed on the steel substrate surface in the nitrogen-hydrogen plasma, and N2 molecules were adsorbed in the nitrogen plasma. By the application of a negative bias potential on the substrate, the adsorption of N atom or Fe-N bond formation was identified on the steel substrate surface. When the stainless steel wall of the chamber was covered with aluminum foil, the yield of NH,, radicals, which were on both the substrate and in the plasma, decreased. By exposure of the substrate, on which N2 molecules or N atoms adsorbed, to the hydrogen plasma, N2 and N disappeared from the steel substrate surface, forming ammonia. Moreover, the adsorption of NH,, radicals disappeared when the stainless steel wall surface was covered with aluminum foil. Thus, the surface of the stainless steel wall acts as a catalyst in ammonia formation. The formation of ammonia in the nitrogen-hydrogen ECR plasma, in which the steel substrate served as the catalyst, is not only through the dissociative adsorption of excited nitrogen molecules but also through the dissociative adsorption of nitrogen molecular ions.  相似文献   

14.
In this paper the fabrication and use of micro-structured metal nozzle plates as emulsification devices is investigated and discussed. These structured metal nozzle plates were fabricated via two distinct routes. Laser ablation, performed with a femtosecond laser, was used to drill micrometer-sized holes into stainless steel and aluminum foils. Also a conventional steel mesh with an average pore size of 2.4 μm fabricated by weaving and roll compaction of micrometer-sized steel wires was investigated. The perforated metal nozzle plates were used for oil-in-water and after hydrophobization with alkylchlorosilanes for water-in-oil emulsification as well. In both cases, two types of drop formation processes were observed. The first one is the shear-induced drop formation well known for cross-flow membrane emulsification. The second is the spontaneous drop formation known from microchannel emulsification.  相似文献   

15.
Al2O3 coatings were obtained by the alkoxide route and deposited on stainless steel using the dip coating technique. The starting precursor was aluminum sec-butoxide modified by acrylic acid in order to prevent its precipitation in the presence of water.Useful information for the structural organization of alumina coatings on stainless steel is deduced from SIMS analysis. SIMS data reveal that the coating structure brings into play two different layers: an outer alumina layer that is more or less doped, mainly by iron, and an internal layer corresponding to the alumina/steel interphase. Beneath the interphase, the presence of an oxidized steel layer on the substrate surface is detected.Whatever the coating, the alumina/steel interphase exhibits a nearly constant thickness. On the other hand, a thickness variation of the oxidized steel layer is observed between samples under study: this thickness increases with the curing time of the coating.  相似文献   

16.
The methods of X-ray diffraction, mercury porosimetry, and electron microscopy are used to study the texture and phase composition of nickel–aluminum supports obtained by the sintering of nickel and aluminum powders reinforced by a stainless steel grid and distributed over a heat-exchange surface, as well as copper catalysts for nitrobenzene hydrogenation to aniline supported on these materials. The catalysts prepared using this procedure are active in this reaction and make it possible to carry it out without substantial overheatings of the surface.  相似文献   

17.
韩江华  杨海鹰 《色谱》2002,20(2):121-124
 用甲基三乙氧基硅烷和四乙氧基硅烷水解缩合后形成的有机 无机杂化溶胶 凝胶 (sol gel)涂层对国产气相用不锈钢毛细管柱进行脱活。通过气相法研究了不同老化温度下所得脱活涂层的行为。结果表明这种涂层不但对不锈钢柱内壁活性点有很好的遮盖作用 ,而且本身具有相当的分离能力。在 2 5 0℃下老化的涂层可使碳原子数在 12以下的正构烷烃达到基线分离 ,与未用涂层的不锈钢裸柱相比 ,吸附活性大大降低 ;但随着老化温度的升高 ,涂层在缩聚老化过程中产生不均匀微孔 ,对被分离物的作用力加强。  相似文献   

18.
本文用自行设计加工的耐压不锈钢密封池在CDR-1型差动热分析仪上测得的一条DSC曲线, 利用计算非等温动力学的积分方程和微分方程拟合四组实验数据, 逻辑选择确定2,6-二硝基苯酚在分解深度为0.007-0.66范围内的热分解反应的最可几数学模式为F(α)=α。用放热速率方程算得其热分解反应的级数为零, 其表观活化能、指前因子的测量真值分别为134±9 k Jmol~(-1)、10~(9.17±0.77)S~(-1)。积分方程逻辑选择求得的表观活化能和指前因子的测量真值相应为133±8 kJmol~(-1)和10~(9.01±0.79)S~(-1)。微分方程逻辑选择求得的表观活化能和指前因子的测量真值相应为134±8 kJmol~(-1)和10~(9.10±0.63)S~(-1)。三者吻合良好。  相似文献   

19.
Potential difficulties associated with background silver salt clusters during matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of nonpolar polymers are reported. Silver salt cluster ions were observed from m/z 1500 to 7000 when acidic, polar matrices, such as 2,5-dihydroxybenzoic acid (DHB), all-trans-retinoic acid (RTA) or 2-(4-hydroxyphenylazo)benzoic acid (HABA), were used for the analysis of nonpolar polymers. These background signals could be greatly reduced or eliminated by the use of nonpolar matrices such as anthracene or pyrene. Representative examples of these background interferences are demonstrated during the analysis of low molecular weight nonpolar polymers including polybutadiene and polystyrene. Nonpolar polymers analyzed with acidic, polar matrices (e.g., RTA) and silver cationization reagents can yield lower quality mass spectral results when interferences due to silver clusters are present. Replacing the polar matrices with nonpolar matrices or the silver salts with copper salts substantially improved the quality of the analytical results. In addition, it was found that silver contamination cannot be completely removed from standard stainless steel sample plates, although the presence of silver contamination was greatly reduced after thorough cleaning of the sample plate with aluminum oxide grit. Carry-over silver may cationize polymer samples and complicate the interpretation of data obtained using nonpolar matrices in the absence of added cationization reagents.  相似文献   

20.
The breakdown potential is a crucial factor in the study of pitting corrosion resistance of stainless steel. This work aims to demonstrate the advantage of different chemometric techniques to estimate the breakdown potential of austenitic stainless steel. In order to predict pitting corrosion behaviour of stainless steel, a total of 60 samples of this alloy were subjected to electrochemical tests varying chloride ion concentration, pH and temperature. The experimental values of the breakdown potential, in addition to the tested environmental factors, were used to construct the predictive models based on support vector machines and artificial neural networks. A multiple‐comparison study based on statistic tests was applied to determine the optimal configuration for each technique. According to the results, support vector machines became a suitable and reliable technique to be applied in the modelling of the breakdown potential of austenitic stainless steels. This technique outperformed the models based on artificial neural networks and provided a useful tool to compare the pitting corrosion resistance of stainless steel in different environmental conditions without recourse to polarization tests. Therefore, this model presented a relevant meaning in science and engineering applications. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号