首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 80 毫秒
1.
In this work, we have investigated the validity of the generalized second law of thermodynamics in logamediate and intermediate scenarios of the universe bounded by the Hubble, apparent, particle and event horizons using and without using first law of thermodynamics. We have observed that the GSL is valid for Hubble, apparent, particle and event horizons of the universe in the logamediate scenario of the universe using first law and without using first law. Similarly the GSL is valid for all horizons in the intermediate scenario of the universe using first law. Also in the intermediate scenario of the universe, the GSL is valid for Hubble, apparent and particle horizons but it breaks down whenever we consider the universe enveloped by the event horizon.  相似文献   

2.
There have been speculations that, in a bounceof a closed universe, there might be a reprocessing offundamental parameters leading to a recycling andcontinual recurrence of the universe. We suggest here some necessary, though by no means sufficient,conditions for a theory in which the growth of adissipative universe is counteracted, so that recyclingmay be possible.  相似文献   

3.
Causal structure of the brane universe with respect to null geodesics in the bulk spacetime is studied. It is pointed out that apparent causality violation is possible for the brane universe which contains matter energy. It is also shown that there is no "horizon problem" in the Friedmann-Robertson-Walker brane universe.  相似文献   

4.
S. W. Hawking's proposal for the wave function of the universe, if correct, determines the conditional probabilities for all properties of the universe. In a simple minisuperspace model it predicts that at any given nonzero energy density, the universe is most probably infinitely large.  相似文献   

5.
Hawking and Hartle interpreted their wave function of the universe as giving the probability for the universe to appear from nothing. However, this is not a correct interpretation, since the normalization presupposes a universe, not nothing. Transition probabilities require a measure on the initial state and a physical result requires a physical initial state.  相似文献   

6.
The Einstein's general relativity is formulated in the Hamiltonian form for a spatially flat, isotropic and homogeneous universe. Subsequently, we perform the canonical quantization procedure to the Hamiltonian to obtain the Wheeler-DeWitt equation. Solving the Wheeler-DeWitt equation and employing the de Broglie-Bohm interpretation to the wave function of the universe, we obtain a new version of spatially flat Friedmann equation for the early universe where the scale factor of the universe is taken to be sufficiently small.  相似文献   

7.
The energy production through expansion of the universe is studied for the Dirac spinor field in all three types of Robertson-Walker universes. Only in the open case is the matter production unlimited (closed universe: limited; flat universe: impossible). The physical properties of the cosmological solutions to the Dirac equation over any RW background are studied in detail.  相似文献   

8.
We develop a stochastic formulation of cosmology in the early universe, after considering the scatter in the redshift-apparent magnitude diagram in the early epochs as an observational evidence for the non-deterministic evolution of early universe. We consider the stochastic evolution of density parameter in the early universe after the inflationary phase qualitatively, under the assumption of fluctuating w factor in the equation of state, in the Fokker-Planck formalism. Since the scale factor for the universe depends on the energy density, from the coupled Friedmann equations we calculated the two variable probability distribution function assuming a flat space geometry.  相似文献   

9.
10.
The role of gravitational energy in the evolution of the universe is examined. In co-moving coordinates, calculation of the Landau-Lifshitz pseudotensor for FRW models reveals that: (i) the total energy of a spatially closed universe irrespective of the equation of state of the cosmic fluid is zero at all times, (ii) the total energy enclosed within any finite volume of the spatially flat universe is zero at all times, (iii) during inflation the vacuum energy driving the accelerated expansion and ultimately responsible for the creation of matter (radiation) in the universe, is drawn from the energy of the gravitational field. In a similar fashion, certain cosmological models which abandon adiabaticity by allowing for particle creation, use the gravitational energy directly as an energy source.  相似文献   

11.
In this work, we have considered the magnetic universe in non-linear electrodynamics. The Einstein field equations for non-flat FRW model have been considered when the universe is filled with the matter and magnetic field only. We have discussed the validity of the generalized second law of thermodynamics of the magnetic universe bounded by Hubble, apparent, particle and event horizons using Gibbs? law and the first law of thermodynamics for interacting and non-interacting scenarios. It has been shown that the GSL is always satisfied for Hubble, apparent and particle horizons but for event horizon, the GSL is violated initially and satisfied at late stage of the universe.  相似文献   

12.
《Nuclear Physics B》1988,309(3):493-512
We outline a framework for describing the bifurcation of the universe into disconnected pieces, and formulate criteria for a system in which such phenomena occur, to describe local quantum physics in a single connected universe. The formalism is a four-dimensional analog of string field theory which we call Universal Field Theory (UFT). We argue that local dynamics in a single universe is a good approximation to UFT if the universal field is classical and if the vertex for emission of a new connected component of the universe is concentrated on universes of small volume. We show that classical UFT is equivalent to a Wheeler-DeWitt equation for a single connected universe plus a set of nonlocal gap equations for the couplings in the spacetime lagrangian. The effective action must be stationary with respect to the couplings. Nonlicality shoes up only at short distances. We solve the equation for the low-energy cosmological constant and show that if the universe undergoes substantial inflation then the cosmological constant is determined to be negative and very small. Its precise value may depend on the fate of nonrelativistic matter in the very late stages of universal expansion. Finally, we argue that corrections to the classical UFT are nonlocal and must be suppressed if the theory is to make sense. This may be the reason that supersymmetric vacua of string theory are not realized in nature.  相似文献   

13.
Analyzing the Klein-Gordon equation in a homogeneous, Isotropic and spatially flat universe model, we find the conditions for the existence of a universe dominated by a scalar field in its early stages.  相似文献   

14.
It is suggested that gravity may not be asymptotically free at short distances because of the interaction of the graviton with matter. If gravity indeed becomes strong at high energies, a revolutionary change of our present theory on the early universe would seem to be necessary. During the first extremely small fraction of a second in the big-bang universe, gravity would have been so strong that it might not have been described by Einstein's theory of general relativity. The possibility of abnormally strong gravity at high energies or short distances is discussed in some detail. A possible explanation is proposed for the nonvanishing mean baryon number density of the universe. It is also pointed out that the universe may well escape from the catastrophic singularity of Penrose and Hawking.  相似文献   

15.
We consider the effect of torsion in the early universe to see if it is possible to explain the small value (if not zero) of the Cosmological constant at the present time. For the gauge-theoretic formulation of the Einstein-Cartan theory, we find a wormhole instanton solution which has a minimum (baby universe) radius of the Planck length. The basic difficulty with the wormhole approach is stressed. Finally, we give an explicit calculation from the expression for the evolution of the scale factor, which shows that the spin-dominated interaction term in the very early universe can cancel the Cosmological constant term at that epoch.  相似文献   

16.
Scenarios for the evolution of the universe can be grouped into two classes: those in which the universe originates from a singularity at t = 0 and those in which the universe continues through a singularity. It is shown that the scenarios of this second type correspond well to the observed data. The entropy difficulties can be eliminated in a scenario which involves the condensation of extremely low-density matter, with a conversion into an open model due to the energy evolved during condensation of the matter into galaxies.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 103–106, June, 1984.  相似文献   

17.
We demonstrate that as we extrapolate the current ΛCDM universe forward in time, all evidence of the Hubble expansion will disappear, so that observers in our “island universe” will be fundamentally incapable of determining the true nature of the universe, including the existence of the highly dominant vacuum energy, the existence of the CMB, and the primordial origin of light elements. With these pillars of the modern Big Bang gone, this epoch will mark the end of cosmology and the return of a static universe. In this sense, the coordinate system appropriate for future observers will perhaps fittingly resemble the static coordinate system in which the de Sitter universe was first presented. Fifth Award in the 2007 Essay Competition of the Gravity Research Foundation.  相似文献   

18.
By considering the logarithmic correction to the energy density, we study the behavior of Hubble parameter in the holographic dark energy model. We assume that the universe is dominated by interacting dark energy and matter and the accelerated expansion of the universe, which may be occurred in the early universe or late time, is studied.  相似文献   

19.
The coupled Dirac-Einstein equations with a negative cosmological constant for an open FRW universe are studied in detail. The corresponding solutions admit bounces ( minimal radius) of the universe such that the matter energy in any comoving 3-volume is either increased or decreased during the bounce according to whether the bounce pressure of the spinor field is appropriately negative or not. If matter is generated (annihilated) during a bounce, the universe subsequently becomes larger (smaller) than before the bounce. Therefore matter can be generated only during the growth of the universe, but it is annihilated again during the subsequent shrinking phase, which together with the growing phase forms a cosmic supercycle.  相似文献   

20.
The possibility of the production of putative superdense nuclei (SDNs) in the universe is studied with the assumption that the SDNs can certainly be formed when nucleons are compressed over some critical density. Possible nuclear astrophysical processes for SDN production taking place in the early big-bang universe, in interstellar space and in ejection from neutron stars are investigated. It is found that the SDNs cannot be produced at all in a hot universe regardless of the properties of SDNs. The situation that would occur in a cold universe is also discussed. A finite amount of SDNs is found to be formed in interstellar space as the product of high-energy reactions between primary cosmic rays and interstellar matter. It also becomes clear that the astration of SDNs thus formed plays no essential role for the enhancement of the number of SDNs. On the other hand, the SDNs originating from neutron stars are estimated to have a cosmic abundance relative to Si as high as 8 × 10?8??5, which is, apparently, in contradiction with observations. Some implications of this are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号