首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The reaction of [Pt(dmba)(PPh3)Cl] [where dmba = N,C-chelating 2-(dimethylaminomethyl)phenyl] with aqueous ammonia in acetone in the presence of AgClO4 gives the acetonimine complex [Pt(dmba)(PPh3)(NH=CMe2)]ClO4 (1). The reaction of [Pt(dmba)(DMSO)Cl] with aqueous ammonia in acetone in the presence of AgClO4 gives a mixture of [Pt(dmba)(NH=CMe2)2]ClO4 (2) and [Pt(dmba)(imam)]ClO4 (3a) (where imam = 4-imino-2-methylpentan-2-amino). [Pt(dmba)(DMSO)Cl] reacts with [Ag(NH=CMe2)2]ClO4 in a 1:1 molar ratio to give [Pt(dmba)(DMSO)(NH=CMe2)]ClO4 (4). The reaction of [Pt(dmba)(DMSO)Cl] with 20% aqueous ammonia in acetone at 70 degrees C in the presence of KOH gives [Pt(dmba)(CH2COMe)(NH=CMe2)] (5), whereas the reaction of [Pt(dmba)(DMSO)Cl] with 20% aqueous ammonia in acetone in the absence of KOH gives [Pt(dmba)(imam)]Cl (3b). The reaction of [NBu4]2[Pt2(C6F5)4(mu-Cl)2] with [Ag(NH=CMe2)2]ClO4 in a 1:2 molar ratio produces cis-[Pt(C6F5)2(NH=CMe2)2] (6). The crystal structures of 1 x 2 Me2CO, 2, 3a, 5, and 6 have been determined. Values of IC50 were calculated for the new platinum complexes against a panel of human tumor cell lines representative of ovarian (A2780 and A2780 cisR) and breast cancers (T47D). At 48 h incubation time complexes 1, 4, and 5 show very low resistance factors against an A2780 cell line which has acquired resistance to cisplatin. 1, 4, and 5 were more active than cisplatin in T47D (up to 30-fold in some cases). The DNA adduct formation of 1, 4, and 5 was followed by circular dichroism and electrophoretic mobility.  相似文献   

2.
Three molecular structures are reported which utilize the NiN(2)S(2) ligands -, (bis(mercaptoethyl)diazacyclooctane)nickel and -', bis(mercaptoethyl)diazacycloheptane)nickel, as metallodithiolate ligands to rhodium in oxidation states i, ii and iii. For the Rh(I) complex, the NiN(2)S(2) unit behaves as a bidentate ligand to a square planar Rh(I)(CO)(PPh(3))(+) moiety with a hinge or dihedral angle (defined as the intersection of NiN(2)S(2) and S(2)Rh(C)(P) planes) of 115 degrees . Supported by -' ligands, the Rh(II) oxidation state occurs in a dirhodium C(4) paddlewheel complex wherein four NiN(2)S(2) units serve as bidentate bridging ligands to two singly-bonded Rh(II) ions at 2.893(8) A apart. A compilation of the remarkable range of M-M distances in paddlewheel complexes which use NiN(2)S(2) complexes as paddles is presented. The Rh(III) state is found as a tetrametallic [Rh(-')(3)](3+) cluster, roughly shaped like a boat propeller and structurally similar to tris(bipyridine)metal complexes.  相似文献   

3.
Gawali SB  Shinde VM 《Talanta》1974,21(11):1212
4-methylpentan-2-ol is used for quantitative extraction of iron(III) from 5.5-6M hydrochloric acid. The iron(III) is then stripped with water and determined titrimetrically. Te(IV), Se(IV), ascorbate, fluoride and thiocyanate interfere must be absent. Mo(VI), W(VI) and Au(III) are co-extracted but do not interfere in the determination.  相似文献   

4.
The synthesis and characterisation of Co(III) complexes derived from a condensation reaction with a central or terminal nitrogen of a dien ligand and the -carbon of a range of substituted bis(pyridin-2-yl)methane ligands are described. Aerial oxidation of bpm {bis(pyridin-2-yl)methane with Co(II)/dien or direct reaction with Co(dien)Cl3 provided in low yield a single C–N condensation product 1 (at the primary terminal NH2) after the pyridyl –CH2– is formally oxidised to –CH+–. The methyl substituted ligand bpe {1,1-bis(pyridin-2-yl)ethane} behaves likewise, except both terminal (prim) and central (sec) amines condense to yield isomeric products 2 and 3. Two of these three materials have been characterised by single crystal X-ray crystallography. The corresponding reactions for the bis(pyridyl) ligand bpk {bis(pyridin-2-yl)ketone} provided C–N condensation products without the requirement for oxidation at the -C center; two carbinolamine complexes in different geometrical configurations resulted, mer-anti-[Co(dienbpc)Cl]ZnCl4, 5, and unsym-fac-[Co(dienbpc)Cl]ZnCl4, 6, {dienbpc=[2-(2-aminoethylamino)-ethylamino]-di-pyridin-2-yl-methanol}. In addition, a novel complex, [Co(bpk)(bpd-OH)Cl]ZnCl4, 4, in which one bidentate N, N-bonded bpk ligand and one tridentate N, O, N-bonded bpd (the diol from bpk+OH) were coordinated, was obtained via the Co(II)/O2 synthetic route. When the bpc ligand (bpc=bis(pyridin-2-yl)methanol) was employed directly as a reagent along with dien, no condensation reactions were observed, but rather a single isomeric complex [Co(dien)(bpc)]Cl.ZnCl4, 7, in which the ligand bpc acted as a N,N,O-bonded tridentate ligand rather than as a N,N-bidentate ligand was isolated. 13C, 1D and 2D 1H NMR studies are reported for all the complexes; they establish the structures unambiguously.  相似文献   

5.
The reactions of [Ag(NH=CMe2)2]ClO4 with cis-[PtCl2L2] in a 1:1 molar ratio give cis-[PtCl(NH=CMe2)(PPh3)2]ClO4 (1cis) or cis-[PtCl(NH=CMe2)2(dmso)]ClO4 (2), and in 2:1 molar ratio, they produce [Pt(NH=CMe2)2L2](ClO4)2 [L = PPh3 (3), L2= tbbpy = 4,4'-di-tert-butyl-2,2'-dipyridyl (4)]. Complex 2 reacts with PPh3 (1:2) to give trans-[PtCl(NH=CMe2)(PPh3)2]ClO(4) (1trans). The two-step reaction of cis-[PtCl2(dmso)2], [Au(NH=CMe2)(PPh3)]ClO4, and PPh3 (1:1:1) gives [SP-4-3]-[PtCl(NH=CMe2)(dmso)(PPh3)]ClO4 (5). The reactions of complexes 2 and 4 with PhICl2 give the Pt(IV) derivatives [OC-6-13]-[PtCl3(NH=CMe2)(2)(dmso)]ClO4 (6) and [OC-6-13]-[PtCl2(NH=CMe2)2(dtbbpy)](ClO4)2 (7), respectively. Complexes 1cis and 1trans react with NaH and [AuCl(PPh3)] (1:10:1.2) to give cis- and trans-[PtCl{mu-N(AuPPh3)=CMe2}(PPh3)2]ClO4 (8cis and 8trans), respectively. The crystal structures of 4.0.5Et2O.0.5Me2CO and 6 have been determined; both exhibit pseudosymmetry.  相似文献   

6.
The processes of aquation of Rh(III) complexes in the presence of BaCl2 and Ba(ClO4)2 were studied by the 103RH and 17O NMR methods. In the first case, the final products were found to be the monomeric aqua chloride complexes, while in the second case, aqua hydroxo complexes were formed. The chloride ions present in the system significantly increase the process rate.  相似文献   

7.
《Polyhedron》1987,6(5):1009-1015
Reactions of 2-mercapto-3-phenyl-4-quinazolinone (LH) with RuCl3·xH2O and RhCl3·xH2O afforded the compounds [RuL2Cl(H2O)]H2O, [RuL2Cl·DMFI and RhL(LH)Cl2·2H2O. Reactions of LH with RuCl3·xH2O in the presence of N-heterocyclic bases led to the formation of complexes of type [RuL2ClB]·H2O (B = pyridine, 3-picoline or imidazole) and [RuLCl2(o-phen)] H2O (o-phen = 1, 10-phenanthroline). These complexes were characterized on the basis of analytical, conductivity, magnetic, IR and electronic spectral and ESR studies. Tentative structures for the complexes are proposed.  相似文献   

8.
Ketimino(phosphino)gold(I) complexes of the type [Au[NR=C(Me)R']L]X (X = ClO4, R = H, L = PPh3, R'=Me (la), Et (2a); L=PAr3 (Ar=C6H4OMe-4), R'=Me (1b), Et (2b); L=PPh3, R=R'=Me (3); X= CF3SO3 (OTf), L=PPh3, R=R'=Me (3'); R=Ar, R'=Me (4)) have been prepared from [Au(acac)L] (acac = acetyl acetonate) and ammonium salts [RNH3]X dissolved in the appropriate ketone MeC(O)R'. Complexes [Au(NH=CMe2)2]X (X = C1O4 (6), OTf (6')) were obtained from solutions of [Au(NH3)2]X in acetone. The reaction of 6 with PPN[AuCl2] or with PhICl2 gave [AuCl(NH=CMe2)] (7) or [AuCI2(NH=CMe2)2]ClO4 (8), respectively. Complex 7 was oxidized with PhICl2 to give [AuCl3(NH=CMe2)] (9). The reaction of [AuCl(tht)] (tht = tetrahydrothiophene), NaClO4, and ammonia in acetone gave [Au(acetonine)2]ClO4 (10) (acetonine = 2,2,4,4,6-pentamethyl-2,3,4,5-tetrahydropyrimidine) which reacted with PPh3 or with PPN[AuCl2] to give [Au(PPh3)(acetonine)]ClO4 (11) or [AuCl(acetonine)] (12), respectively. Complex 11 reacts with [Au(PPh3)(Me2CO)]ClO4 to give [(AuPPh3)2(mu-acetonine)](ClO4)2 (13). The reaction of AgClO4 with acetonine gave [Ag(acetonine)(OClO3)] (14). The crystal structures of [Au(NH2Ar)(PPh3)]OTf (5), 6' and 10 have been determined.  相似文献   

9.
Interaction of cis,trans,cis-[Rh(H)2(PR3)2(acetone)2]PF6 complexes (R = aryl or R3 = Ph2Me, Ph2Et) under H2 with E-semicarbazones gives the Rh(III)-dihydrido-bis(phosphine)-semicarbazone species cis,trans-[Rh(H)2(PR3)2{R'(R' ')C=N-N(H)CONH2}]PF6, where R' and R' ' are Ph, Et, or Me. The complexes are generally characterized by elemental analysis, 31P{1H} NMR, 1H NMR, and IR spectroscopies, and MS. X-ray analysis of three PPh3 complexes reveals chelation of E-semicarbazones by the imine-N atom and the carbonyl-O atom. In contrast, the corresponding reaction of [Rh(H)2(PPhMe2)2(acetone)2]PF6 with acetophenone semicarbazone gives the ortho-metalated-semicarbazone species cis-[RhH(PPhMe2)2{o-C6H4(Me)C=N-N(H)CONH2}]PF6. The X-ray structure of E-propiophenone semicarbazone is also reported. Rhodium-catalyzed, homogeneous hydrogenation of semicarbazones was not observed even at 40 atm H2.  相似文献   

10.
The tetrametallic cluster complexes {Cp*Ir[E(2)C(2)(B(10)H(9))]}Rh(2)(cod){Cp*Ir[E(2)C(2) (B(10)H(10))]} (E = S; Se) have been synthesized by reactions of the 16-electron half-sandwich iridium complexes [Cp*Ir{E(2)C(2)(B(10)H(10))}] [Cp* = eta(5)-C(5)Me(5), E = S, Se] with [Rh(cod)(micro-OEt)(2)] at room temperature in toluene solution. In the solid state, this tetrametallic cluster exhibits an irregular nearly planar metal skeleton with the two carborane dichalcogenolato ligands bridging the four metal centers from both sides of the tetrametallic plane. Even though all metal atoms coordinate bridging chalcogen atoms, they show different electronic and coordination environments. The molecular structures of and have been determined by X-ray crystallography.  相似文献   

11.
Some news thiopyrimidine derivatives and complexes [4-amino-5-nitroso-6-oxo-1,2,3,6-tetrahydro-2-thio-pyrimidine (TANH), its 2-methylthio derivative (MTH), the ammonium salt ofTANH (sTANH) and six new complexes of formulas: Rh(MT)2Cl · 2H2O, Pd(MTH)2Cl2, Pt(MTH)2Cl4, Au(MTH)Cl3 Pd(TANH)2Cl2 and Au(TAN )Cl] have been synthesized and characterized by elemental analysis, IR and1H-NMR spectroscopy techniques. The thermal behaviour of all compounds has also been studied.
Rh(III), Pd(II), Pt(IV) und Au(III) Komplexe von 2-Thiopyrimidin Derivaten
Zusammenfassung Es wurden einige neue Thiopyrimidinderivate und deren Komplexe synthetisiert und mittels Elementaranalyse, IR und1H-NMR charakterisiert: 4-Amino-5-nitroso-6-oxo-1,2,3,6-tetrahydro-2-thio-pyrimidin (TANH), dessen 2-Methylthio-Derivat (MTH), das Ammoniumsalz vonTANH (sTANH) und sechs neue Komplexe der Formeln Rh(MT)2Cl · 2H2O, Pd(MTH)2Cl2, Pt(MTH)2Cl4, Au(MTH)Cl3, Pd(TANH)2Cl2 und Au(TAN )Cl. Das thermische Verhalten der Verbindungen wurde ebenfalls untersucht.
  相似文献   

12.
The trifluorovinyl phosphine complexes [Cp*RhCl2{PR3−x(CFCF2)x}] (1x = 1, a R = Ph, b Pri, c Et; 2x = 2, R = Ph) have been prepared by treatment of [Cp*RhCl(μ-Cl)]2 with the relevant phosphine. The salt [Cp*RhCl(CNBut){PPh2(CFCF2)}]BF4, 3, was prepared by addition of ButNC to 1a in the presence of NaBF4. The salt [Cp*RhCl{κP,κS-(CF2CF)PPh(C6H4SMe-2)}]BF4 was prepared as a mixture of cis (5a) and trans (5b) isomers by treatment of [Cp*RhCl(μ-Cl)]2 with the phosphine-thioether (CF2CF)PPh(C6H4SMe-2), 4, in the presence of NaBF4. The structures of 1a-c and 5a have been determined by single-crystal X-ray diffraction. Intramolecular dehydrofluorinative carbon-carbon coupling between pentamethylcyclopentadienyl and trifluorovinylphosphine ligands of 1a, 3 and 5 has been attempted. No reaction was observed on treatment of the neutral complex [Cp*RhCl2{PPh2(CFCF2)}], 1a, with proton sponge, however, 5a underwent dehydrofluorinative coupling to yield [{η5,κP,κS-(C5Me4CH2CFCF)PPh(C6H4SMe-2)}RhCl]BF4, 6. Other reactions, in particular addition of HF across the vinyl bonds of 5, occurred leading to a mixture of products. The cation of 3 underwent similar reactions.  相似文献   

13.
Rh(III) porphyrin complexes with bridging hydrazine and substituted hydrazine ligands were characterized in solution by (1)H NMR spectroscopy and in the solid state by X-ray diffraction. Addition of further ligand to these species afforded 1:1 complexes in which methylhydrazine and N,N-dimethylhydrazine preferentially bound to the Rh center through the substituted nitrogen atom, as evidenced by (1)H NMR chemical shifts. An alkylated Rh(III) porphyrin was isolated as a decomposition product of the reaction of N,N-dimethylhydrazine with Rh(III) porphyrin in the presence of light and oxygen. Me(2)Se(2) and Me(2)S(2) formed bridging and nonbridging complexes with Rh(III) porphyrin, analogous to that observed with N,N'-dimethylhydrazine.  相似文献   

14.
Extraction complexes of Eu(III) and Am(III) with two 2,6-dicarboxypyridine diamide-type ligands L–A and L–B (Fig. 1) are studied by density functional theory (DFT). At both B3LYP/6-31G(d)/RECP and MP2/6-31G(d)/RECP levels of theory, the geometrical optimizations of the structures of the complexes can achieve the same accuracy and obtain the same geometrical configuration. At the B3LYP/6-311G(d,p)/RECP level of theory Eu3+ and Am3+ prefer to form [ML]3+ complexes under the solvation conditions, and the Am(III) complexes with L–A are more stable than the corresponding Eu(III) complexes. In the system with the ligand L–B, both [ML]3+ and [ML(NO3)3] species are very unstable.  相似文献   

15.
New chelate bis-heterocyclic-carbene complexes of Rh(I) and Rh(III) have been obtained and fully characterized. The molecular structures of the new species have been determined. The synthesis of the compounds starts from the bisimidazolium precursors, which are deprotonated with NEt(3) under mild reaction conditions, leading to coordination to the Rh complex. The Rh(III) compounds are generated from Rh(I) and [Rh(II)](2) species, although there is no apparent oxidizing agent in the reaction media.  相似文献   

16.
Reaction of the aryl-monophosphine ligand alpha(2)-(diisopropylphosphino)isodurene (1) with the Rh(I) precursor [Rh(coe)(2)(acetone)(2)]BF(4) (coe=cyclooctene) in different solvents yielded complexes of all three common oxidation states of rhodium, depending on the solvent used. When the reaction was carried out in methanol a cyclometalated, solvent-stabilized Rh(III) alkyl-hydride complex (2) was obtained. However, when the reaction was carried out in acetone or dichloromethane a dinuclear eta(6)-arene Rh(II) complex (5) was obtained in the absence of added redox reagents. Moreover, when acetonitrile was added to a solution of either the Rh(II) or Rh(III) complexes, a new solvent-stabilized, noncyclometalated Rh(I) complex (6) was obtained. In this report we describe the different complexes, which were fully characterized, and probe the processes behind the remarkable solvent effect observed.  相似文献   

17.
A synthetic route to linear pairs of Rh2 "paddlewheel" dimers bridged by Ru(II) complexes is presented. A bis(4'-(4-carboxyphenyl)-terpyridine)Ru(II) complex spans two Rh2 dimers and displays a 26 A separation between the dimers. Increased electronic interaction is found for the dimer of dimers without the phenyl groups using bis(4'-(4-carboxy)-terpyridine)Ru(II) as the bridging complex.  相似文献   

18.
Four half-sandwich cobalt complexes, CpCo(2-PyS)2 (2), CpCo(2-PyS)2 · HI (3), CpCo(2-PyS) (4-PyS) (4), (CpCo)2(μ-PhS)2(μ-2-PyS)I (5) [Cp = pentamethylcyclopentadienyl, 2-PyS = 2-pyridinethiolate, 4-PyS = 4-pyridinethiolate, PhS = benzenethiolate] were successfully synthesized by the reactions of 2-pyridinethione, lithium 4-pyridinethiolate and lithium benzenethiolate with CpCo(2-PyS)I (1), respectively. Complexes 2 and 3 have the structures with two 2-pyridinethiolates ligands coordinated to the cobalt atom. Two different pyridinethiolates ligands can be identified in complex 4. The molecular structure of 5 consists of two Cp-Co fragments, which are triply bridged by three sulfur atoms from different ligands. The molecular structures of 3 and 5 were determined by X-ray crystallographic analysis. All the complexes have been well characterized by elemental analysis, NMR and IR spectra.  相似文献   

19.
Reactivity and structural studies of unusual rhodium and iridium systems bearing two N-heterocyclic carbene (NHC) ligands are presented. These systems are capable of intramolecular C-H bond activation and lead to coordinatively unsaturated 16-electron complexes. The resulting complexes can be further unsaturated by simple halide abstraction, leading to 14-electron species bearing an all-carbon environment. Saturation of the vacant sites in the 16- and 14-electron complexes with carbon monoxide permits a structural comparison. DFT calculations show that these electrophilic metal centers are stabilized by pi-donation of the NHC ligands.  相似文献   

20.
Platinum complexes with Z configuration iminoether ligands (trans-[PtCl(2)(HN=C(OMe)Bu(t))(2)], 1, and trans-[PtCl(4)(HN=C(OMe)Bu(t))(2)], 2) have been structurally characterized for the first time. The nearly planar Pt-N-C-O-C chain, all atoms being in gauche conformation, brings the terminal Pt and C atoms very close to one another. The steric clash is released by considerably increasing the Pt-N-C, N-C-O, and C-O-C bond angles (133, 124, and 121 degrees for 1, respectively; 147, 129, and 127 degrees for 2, respectively), which are well above the expected values (120 degrees for Pt-N-C and N-C-O; less than 120 degrees for C-O-C owing to the repulsive effect exerted by the lone pair of electrons on the oxygen atom). In the platinum(II) case the smaller increase of bond angles is accompanied by a greater value of the Pt-N-C-O torsion angle (27.3 and 15.6 degrees for 1 and 2, respectively). The stabilization of the Z configuration, notwithstanding the steric clashes described above, has been achieved by a careful choice of the R substituent in the iminoether moiety (a bulky tert-butyl group). The reactions of the platinum(IV) species (2) in basic and acidic conditions and with triphenylphosphine have been investigated. Bases and acids both interact with the coordinated ligand in such a way to weaken the coordinative bond and promote the release of the iminoether ligands. The phosphine promotes a ready and complete reduction of the platinum(IV) complex to the corresponding platinum(II) species (1). Compound 1 reacts with a stoichiometric amount of phosphine (1:1 molar ratio) to form cis-[PtCl(2)(PPh(3))(Z-HN=C(OMe)Bu(t))] and with excess phosphine to form [PtCl(2)(PPh(3))(2)] and free iminoether. The latter two reactions leading to formation of a mixed phosphine/iminoether platinum species and to free iminoether, which can be used as a synthon for further organic transformations, can be of synthetic utility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号