首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrochemical performances of lithium iron phosphate (LiFePO4), hard carbon (HC) materials, and a full cell composed of these two materials were studied. Both positive and negative electrode materials and the full cell were characterized by scanning electron microscopy, transmission electron microscopy, charge–discharge tests, and alternating current (a.c.) impedance techniques. Experimental results show that the LiFePO4/HC full cell exhibits a gradually decreased cell voltage, and it is capable of delivering a reversible discharge capacity of 122.1 mAh g−1 at 0.2-C rate. At the higher rate of 10 C, the efficiency of the full cell remains almost unchanged from that of 0.2 C. Furthermore, the LiFePO4/HC battery demonstrated a long life of 2,450 cycles with 40% of capacity change at a 10-C high rate. The internal resistance of the full cell is rather low as it is revealed from a.c. impedance measurements. These properties make the LiFePO4/HC battery an attractive option for high rate and long cycle life power applications.  相似文献   

2.
A LiFePO4/C composite was obtained by a polymer pyrolysis reduction method, using lithium polyacrylate (LiPAA) as carbon source and fractional lithium source, and FePO4·2H2O as iron and phosphorus source. The structure of the LiFePO4/C composites was investigated by X-ray diffraction (XRD). The micromorphology of the precursors and LiFePO4/C powders was observed using scanning electron microscopy (SEM). Laser particle analyzer and BET were also used to characterize the materials. It was found that the micromorphology, particle size distribution and specific surface area of LiFePO4/C composites were greatly influenced by the molecular weight of LiPAA. The electrochemical properties of the LiFePO4/C composites were evaluated by cyclic voltammograms (CVs), electrochemical impedance spectra (EIS) and constant current charge/discharge cycling tests. The results showed that the molecular weight of LiPAA, heating rate, synthetic temperature and sintering duration directly affected the electrochemical properties of LiFePO4/C composites. The sample with the optimized electrochemical properties were obtained in the following conditions, i.e., LiPAA with the molecular weight of 20,000, heating rate of 10 °C min−1, synthetic temperature of 700 °C and sintering duration of 15 h.  相似文献   

3.
Single-phase LiCoPO4 nanoparticles were synthesized by solid-state reaction method and subsequent high-energy ball milling. The electrochemical properties of LiCoPO4/Li batteries were analyzed by ac impedance experiments, cyclic voltammetry (CV), and charge/discharge tests. The structural and morphological performance of LiCoPO4 nanoparticles was investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscope (TEM). The XRD result demonstrated that LiCoPO4 nanoparticles had an orthorhombic olivine-type structure with a space group of Pmnb. Different conductive additives including acetylene black and carbon black (SP270) were used to fabricate electrodes. The morphologies of the electrodes and different conductive additives were observed by field emission-scanning electron microscopy (FE-SEM). LiCoPO4/Li battery with acetylene black showed the best electrochemical properties, and exhibited a discharge plateau at around 4.7 V with an initial discharge capacity of 110 mAh g−1 at a discharge current density of 0.05 mA cm−2 at 25 °C.  相似文献   

4.
A novel LiFePO4/Carbon aerogel (LFP/CA) nanocomposite with 3D conductive network structure was synthesized by using carbon aerogels as both template and conductive framework, and subsequently wet impregnating LiFePO4 precursor inside. The LFP/CA nanocomposite was characterized by X-ray diffraction (XRD), TG, SEM, TEM, nitrogen sorption, electrochemical impedance spectra and charge/discharge test. It was found that the LFP/CA featured a 3D conductive network structure with LiFePO4 nanoparticles ca. 10–30 nm coated on the inside wall of the pore of CA. The LFP/CA electrodes delivered discharge capacity for LiFePO4 of 157.4, 147.2, 139.7, 116.3 and 91.8 mA h g−1 at 1 °C, 5 °C, 10 °C, 20 °C and 40 °C, respectively. In addition, the LFP/CA electrode exhibited good cycling performance, which lost less than 1% of discharge capacity over 100 cycles at a rate of 10 °C. The good high rate performances of LiFePO4 were attributed to the unique 3D conductive network structure of the nanocomposite.  相似文献   

5.
Crystalline LiFePO4 nanoplates were incorporated with 5 wt.% multi-walled carbon nanotubes (CNTs) via a facile low temperature polyol process, in one single step without any post heat treatment. The CNTs were embedded into the LiFePO4 particles to form a network to enhance the electrochemical performance of LiFePO4 electrode for lithium-ion battery applications. The structural and morphological characters of the LiFePO4–CNT composites were investigated by X-ray diffraction, Fourier Transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. The electrochemical properties were analyzed by cyclic voltammetry, electrochemical impedance spectroscopy and charge/discharge tests. Primary results showed that well crystallized olivine-type structure without any impurity phases was developed, and the LiFePO4–CNT composites exhibited good electrochemical performance, with a reversible specific capacity of 155 mAh g−1 at the current rate of 10 mA g−1, and a capacity retention ratio close to 100% after 100 cycles.  相似文献   

6.
Olivine-type LiFePO4 composite materials for cathode material of the lithium-ion batteries were synthesized by using a sol-gel method and were coated by a chemical deposition of silver particles. As-obtained LiFePO4/C-Ag (2.1 wt.%) composites were characterized by transmission electron microscopy (TEM), powder X-ray diffraction (XRD), conductivity measurements, cyclic voltammetry, as well as galvanostatic measurements. The results revealed that the discharge capacity of the LiFePO4/C-Ag electrode is 136.6 mAh/g, which is 7.6% higher than that of uncoated LiFePO4/C electrode (126.9 mAh/g). The LiFePO4/C coated by silver nanoparticles enhances the electrode conductivity and specific capacity at high discharge rates. The improved capacity at high discharge rates may be attributed to increased electrode conductivity and the synergistic effect on electron and Li+ transport after silver incorporation.  相似文献   

7.
LiFePO4/graphene (LiFePO4/G) cathode with exciting electrochemical performance was successfully synthesized by liquid phase method. LiFePO4 nanoparticles wrapped with multi-layered grapheme can be fabricated in a short time. This method did not need external heating source. Heat generated by chemical reaction conduct the process and removed the solvent simultaneously. The LiFePO4/G were analyzed by X-ray diffraction (XRD) analysis, scanning electron microscope (SEM), transmission electron microscopy (TEM), magnetic properties analysis and electrochemical performance tests. The LiFePO4/G delivered a capacity of 160 mAh g−1 at 0.1C and could tolerate various dis-charge currents with a capacity retention rate of 99.8%, 99.2%, 99.0%, 98.6%, 97.3% and 95.0% after stepwise under 5C, 10C, 15C, 20C, 25C and 30C, respectively.  相似文献   

8.
The yeast cells are adopted as a template and cementation agent to prepare LiFePO4/C with high surface area by co-precipitation and microwave processing. The electrochemical properties of the resultant products are investigated. The synthesized LiFePO4/C is characterized by means of X-ray diffraction, transmission electron microscopy (TEM), Brunauer–Emmett–Teller method, and battery test instrument. The LiFePO4/C particles with average size of 35-100 nm coated by porous carbon are observed by TEM. The LiFePO4/C, with the specific surface area of 98.3 m2/g, exhibits initial discharge specific capacity of 147 mAh/g and good cycle ability. The yeast cells as a template are used to synthesize the precursor LiFePO4/cells compounds. In microwave heating process, the use of yeast cells as reducing matter and cementation agent results in the enhancement of the electrochemical properties.  相似文献   

9.
Dy doping and carbon coating are adopted to synthesize a LiFePO4 cathode material in a simple solution environment. The samples were characterized by X‐ray diffraction (XRD) and scanning electron microscopy (SEM). Their electrochemical properties were investigated by cyclic voltammetry (CV) and galvanostatic charge‐discharge tests. An initial discharge capacity of 153 mAh/g was achieved for the LiDy0.02Fe0.98PO4/C composite cathode with a rate of 0.1 C. In addition the electronic conductivity of Dy doped LiFePO4/C was enhanced to 1.9 × 10?2 Scm?1. The results suggest that the improvement of the electrochemical properties are attributed to the dysprosium doping and carbon coating which facilitates the phase transformation between triphylite and heterosite during cycling. XRD data indicate that doping did not destroy the lattice structure of LiFePO4. To evaluate the effect of Dy substitution, cyclic voltammetry was used at room temperature. prepared. From Cv measurement a more symmetric curve with smaller interval between the cathodic and anodic peak current was obtained by Dy substitution. This denoted a decreasing of polarization with Dy substitution, which illustrated an enhancement of electrochemical performances.  相似文献   

10.
Olivine LiFePO4/C nanocomposite cathode materials with small-sized particles and a unique electrochemical performance were successfully prepared by a simple solid-state reaction using oxalic acid and citric acid as the chelating reagent and carbon source. The structure and electrochemical properties of the samples were investigated. The results show that LiFePO4/C nanocomposite with oxalic acid (oxalic acid: Fe2+= 0.75:1) and a small quantity of citric acid are single phase and deliver initial discharge capacity of 122.1 mAh/g at 1 C with little capacity loss up to 500 cycles at room temperature. The rate capability and cyclability are also outstanding at elevated temperature. When charged/discharged at 60 °C, this materials present excellent initial discharge capacity of 148.8 mAh/g at 1 C, 128.6 mAh/g at 5 C, and 115.0 mAh/g at 10 C, respectively. The extraordinarily high performance of LiFePO4/C cathode materials can be exploited suitably for practical lithium-ion batteries.  相似文献   

11.
Well-shaped and uniformly dispersed LiFePO_4 nanorods with a length of 400–500 nm and a diameter of about 100 nm, are obtained with participation of a proper amount of anion surfactant sodium dodecyl sulfonate(SDS) without any further heating as a post-treatment. The surfactant acts as a self-assembling supermolecular template, which stimulated the crystallization of LiFePO_4 and directed the nanoparticles growing into nanorods between bilayers of surfactant(BOS). LiFePO_4 nanorods with the reducing crystal size along the b axis shorten the diffusion distance of Li~+ extraction/insertion, and thus improve the electrochemical properties of LiFePO_4 nanorods. Such prepared LiFePO_4 nanorods exhibited excellent specific capacity and high rate capability with discharge capacity of 151 mAh/g, 122 mAh/g and 95 mAh/g at 0.1C, 1 C and 5 C, respectively. Such excellent performance of LiFePO_4 nanorods is supposed to be ascribed to the fast Li~+ diffusion velocity from reduced crystal size along the b axis and the well electrochemical conductivity. The structure, morphology and electrochemical performance of the samples were characterized by XRD, FE-SEM, HRTEM, charge/discharge tests, and EIS(electrochemical impedance spectra).  相似文献   

12.
Olivine LiFePO4/C cathode materials for lithium ion batteries were synthesized using monodisperse polystyrene (PS) nano-spheres and other carbon sources. The structure, morphology, and electrochemical performance of LiFePO4/C were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), galvanostatic charge–discharge tests, electrochemical impedance spectroscopy (EIS) measurements, and Raman spectroscopy measurements. The results demonstrated that LiFePO4/C materials have an ordered olivine-type structure with small particle sizes. Electrochemical analyses showed that the LiFePO4/C cathode material synthesized from 7 wt.% PS nano-spheres delivers an initial discharge capacity of 167 mAh g-1 (very close to the theoretical capacity of 170 mAh g-1) at 0.1 C rate cycled between 2.5 and 4.1 V with excellent capacity retention after 50 cycles. According to Raman spectroscopy and EIS analysis, this composite had a lower I D/I G, sp 3/sp 2 peak ratio, charge transfer resistance, and a higher exchange current density, indicating an improved electrochemical performance, due to the increased proportion of graphite-like carbon formed during pyrolysis of PS nano-spheres, containing functionalized aromatic groups.  相似文献   

13.
Hybrid materials xLiFePO4·(1 − x)Li3V2(PO4)3 were synthesized by sol–gel method, with phenolic resin as carbon source and chelating agent, methylglycol as surfactant. The crystal structure, morphology and electrochemical performance of the prepared samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), galvanostatic charge–discharge test and particle size analysis. The results show that LiFePO4 and Li3V2(PO4)3 co-exist in hybrid materials, but react in single phase. Compared with individual LiFePO4 and Li3V2(PO4)3 samples, hybrid materials have smaller particle size and more uniform grain distribution. This structure can facilitate Li ions extraction and insertion, which greatly improves the electrochemical properties. The sample 0.7LiFePO4·0.3Li3V2(PO4)3 retains the advantages of LiFePO4 and Li3V2(PO4)3, obtaining an initial discharge capacity of 166 mA h/g at 0.1 C rate and 109 mA h/g at 20 C rate, with a capacity retention rate of 73.3% and an excellent cycle stability.  相似文献   

14.
Nanocrystalline LiFePO4 and LiFe0.97Sn0.03PO4 cathode materials were synthesized by an inorganic-based sol–gel route. The physicochemical properties of samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and elemental mapping. The doping effect of Sn on the electrochemical performance of LiFePO4 cathode material was extensively investigated. The results showed that the doping of tin was beneficial to refine the particle size, increase the electrical conductivity, and facilitate the lithium-ion diffusion, which contributed to the improvement of the electrochemical properties of LiFePO4, especially the high-rate charge/discharge performance. At the low discharge rate of 0.5 C, the LiFe0.97Sn0.03PO4 sample delivered a specific capacity of 158 mAh g−1, as compared with 147 mAh g−1 of the pristine LiFePO4. At higher C-rate, the doping sample exhibited more excellent discharge performance. LiFe0.97Sn0.03PO4 delivered specific capacity of 146 and 128 mAh g−1 at 5 C and 10 C, respectively, in comparison with 119 and 107 mAh g−1 for LiFePO4. Moreover, the doping of Sn did not influence the cycle capability, even at 10 C.  相似文献   

15.
LiFePO4/C composites were synthesized by pyrolysis of LiFePO4/polypyrrole (PPy), which was obtained by an in situ chemical polymerization involving pyrrole monomer and hydrothermal synthesis LiFePO4. All samples were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, cyclic voltammetry, and galvanostatic charge–discharge techniques. The results showed the LiFePO4/C sintered at 800 °C containing 2.8 wt.% carbon exhibited a higher discharge capacity of 49.6 mAh·g−1 at 0.1 C, and bare LiFePO4 only delivered 11.6 mAh·g−1 in 2 M LiNO3 aqueous electrolyte. The possible reason for the improvement of electrochemical performance was discussed and could be attributed to the formation of aromatic compounds during the carbonization of PPy.  相似文献   

16.
Core–shell LiFePO4/C composite was synthesized via a sol–gel method and doped by fluorine to improve its electrochemical performance. Structural characterization shows that F ions were successfully introduced into the LiFePO4 matrix. Transmission electron microscopy verifies that F-doped LiFePO4/C composite was composed of nanosized particles with a ~3 nm thick carbon shell coating on the surface. As a cathode material for lithium-ion batteries, the F-doped LiFePO4/C nanocomposite delivers a discharge capacity of 162 mAh/g at 0.1 C rate. Moreover, the material also shows good high-rate capability, with discharge capacities reaching 113 and 78 mAh/g at 10 and 40 C current rates, respectively. When cycled at 20 C, the cell retains 86% of its initial discharge capacity after 400 cycles, demonstrating excellent high-rate cycling performance.  相似文献   

17.
LiFePO4/carbon complexes were prepared by electrospinning to improve rate performance at high C-rate and their electrochemical properties were investigated to be used as a cathode active material for lithium ion battery. The LiFePO4/carbon complexes were prepared by the electrospinning method. The prepared samples were characterized by SEM, EDS, XRD, TGA, electrometer, and electrochemical analysis. The LiFePO4/carbon complexes prepared have a continuous structure with carbon-coated LiFePO4 and the LiFePO4 in LiFePO4/carbon complex has improved thermal stability from carbon coating. The conductivity of LiFePO4/carbon complex heat-treated at 800 °C is measured as 2.23 × 10?2 S cm?1, which is about 106–107 times more than that of raw LiFePO4. The capacity ratio of coin cell manufactured from raw LiFePO4 is 40%, whereas the capacity ratio of coin cell manufactured from LiFePO4/carbon complex heat-treated at 800 °C is 61% (10 C/0.1 C). The improved rate performance of LiFePO4/carbon complex heat-treated at 800 °C is due to the carbon coating and good electrical connection.  相似文献   

18.
A novel network composite cathode was prepared by mixing LiFePO4 particles with multiwalled carbon nanotubes for high rate capability. LiFePO4 particles were connected by multiwalled carbon nanotubes to form a three-dimensional network wiring. The web structure can improve electron transport and electrochemical activity effectively. The initial discharge capacity was improved to be 155 mA h/g at C/10 rate (0.05 mA/cm2) and 146 mA h/g at 1C rate. The comparative investigation on MWCNTs and acetylene black as a conducting additive in LiFePO4 proved that MWCNTs addition was an effective way to increase rate capability and cycle efficiency.  相似文献   

19.
Platinum (Pt) nanoparticles were electrochemically deposited on multi-walled carbon nanotubes (MWCNTs) through a three-step process, including an electrochemical treatment of MWCNT, electro-oxidation of PtCl4 2− to Pt(IV) complex, and an electro-conversion of Pt(0) on MWCNT. The effect of formation conditions for Pt(IV) complexes on the Pt nanoparticals transformed was investigated. The structure and elemental composition of the resulting Pt/MWCNT electrode were characterized by transmission electron micrograph (TEM) and energy dispersive X-ray spectroscopy (EDX). The electrocatalytic properties of the resulting Pt/MWCNT electrode for methanol oxidation have been investigated. The high electrocatalytic activity and good stability of Pt/MWCNT electrode may be attributed to the high dispersion of platinum nanoparticles and the particular properties of the MWCNT supports.  相似文献   

20.
LiFePO4 material was synthesized at 670 °C in an Ar atmosphere using a sol–gel method. This material showed a well developed XRD pattern (orthorhombic structure, Pnma) without any peaks at 2θ = 41°, indicating the absence of FeP or metallic Fe2P impurities. The Li/LiFePO4 cell showed a high initial discharge capacity of more than 150 mA h/g and no capacity decrease until the 70th cycle (>99.9%). This cell also exhibits excellent cycle performance at high current densities of over 30C, without any surface treatment or carbon coating onto the LiFePO4 particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号