首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell membrane permeabilization is caused by the application of high intensity electric pulses of short duration. The extent of cell membrane permeabilization depends on electric pulse parameters, characteristics of the electropermeabilization media and properties of cells exposed to electric pulses. In the present study, the temperature effect during pulse application on cell membrane fluidity and permeabilization was determined in two different cell lines: V-79 and B16F-1. While cell membrane fluidity was determined by electron paramagnetic resonance (EPR) method, the cell membrane electropermeabilization was determined by uptake of bleomycin and clonogenic assay. A train of eight rectangular pulses with the amplitude of 500 V/cm, 700 V/cm and 900 V/cm in the duration of 100 micros and with repetition frequency 1 Hz was applied. Immediately after the pulse application, 50 microl droplet of cell suspension was maintained at room temperature in order to allow cell membrane resealing. The cells were then plated for clonogenic assay. The main finding of this study is that the chilling of cell suspension from physiological temperature (of 37 degrees C) to 4 degrees C has significant effect on cell membrane electropermeabilization, leading to lower percent of cell membrane permeabilization. The differences are most pronounced when cells are exposed to electric pulse amplitude of 900 V/cm. At the same time with the decreasing of temperature, the cell membranes become less fluid, with higher order parameters in all three types of domains and higher proportion of domain with highest order parameter. Our results indicate that cell membrane fluidity and domain structure influence the electropermeabilization of cells, however it seems that some other factors may have contributing role.  相似文献   

2.
Crystallins in the retina may serve a chaperone-like protective function. In this study we measured mRNA levels for alpha-, beta- and gamma-crystallins in rat retinas following treatment with potentially damaging levels of light. We also determined crystallin protein patterns in photoreceptor cell rod outer segments (ROSs) isolated from rats exposed to intense light. Weanling albino rats were maintained in a dim cyclic light environment or in darkness for 40days. At P60 animals were treated with intense visible light, for as long as 8h, beginning at various times of the day or night. Retinas were excised immediately after light treatment and used for quantitative RT-PCR, or to prepare ROSs for western analysis. Some eyes were frozen in OCT for crystallin immunohistochemistry. Intense light exposure led to increases in mRNA expression for all retinal crystallins and to changes in ROS crystallin immunoreactivity. These light-induced changes were found to depend on the time of day that exposure started, duration of light treatment and previous light rearing history. We suggest that crystallin synthesis in retina exhibits a dependence on both light stress and circadian rhythm and that within photoreceptor cells crystallins appear to migrate in a light-independent, circadian fashion.  相似文献   

3.
In this work, the impact of lipid lateral mobility on the steric interaction between membranes containing poly(ethylene glycol) (PEG) functionalized lipids was investigated using the surface force apparatus. The force-distance profiles show the presence of electrostatic and steric repulsion that arise from the presence of negatively charged PEG functionalized lipids. Fluid-phase bilayers have high lateral diffusion relative to gel-phase bilayers; however, a quantitative comparison of the interaction forces between membranes in these two different phase states demonstrates a reduced rate of diffusion in the fluid phase for the PEG-lipids under constrained geometries. Thus, the amount of polymer in the contact zone can be modulated and is reduced with fluid membranes; however, complete exclusion was not achieved. As a result, the steric repulsion afforded by PEG chains or binding affinity of ligated PEG chains can only be modestly tailored by the phase state of the liposome.  相似文献   

4.
The effects of alternative stress, which was generated through a strong sound field apparatus set up in our lab, on cultured chrysanthemum callus cells were studied. Meanwhile we measured the deformability of chrysanthemum cell membranes and studied the influence of the cytoskeleton after the treatment of colchicine using micropipette aspiration technique. Based on our experimental results, we found that the deformability of cell membrane decreased in stress condition. However, the effect disappeared after the treatment of cytochalasin. Therefore, we thought that the reason on the deformability of cells decreasing was the microfilament rearranging and consequently the cells becoming more rigid under the alternative stress.  相似文献   

5.
The non-thermal effects of microwave irradiation on enzyme-catalyzed reactions have been evaluated by keeping the reaction temperature constant during irradiation. Subtilisin-catalyzed transesterification and α-chymotrypsin-catalyzed esterification have been carried out in six solvents of differing polarities and at three different temperatures. In all cases, microwave irradiation was found to increase the initial reaction rates by 2.1-4.7 times at all hydration levels. It is also shown that microwave irradiation can be used in conjunction with other strategies (like pH tuning and salt activation) for enhancing initial reaction rates.  相似文献   

6.
7.
The fluorescence resonance energy transfer (FRET) in a lipid bilayer system containing two different donors and one common acceptor at below and above transition temperature has been studied and all the FRET parameters are analyzed using steady state and time-resolved fluorescence spectroscopy. Using dynamic light scattering measurement, we have followed the process of preparation of small unilamellar vesicles, and by following the FRET parameters of C-153-Rh6G and C-151-Rh6G pairs inside SUVs at 16 °C and 33 °C (T(m) = 23.9 °C) we have noticed that there is greater effect of temperature on the FRET parameters in case of the C-153-Rh6G pair than that of the C-151-Rh6G pair. Finally we have concluded that this difference is due to their different location inside the lipid bilayer in which fluidity of the long alkyl chain markedly affects the FRET parameters for C-153-Rh6G pair embedded inside a small unilamellar vesicle of size 20-50 nm.  相似文献   

8.
The low level laser therapy (LLLT) has been used as an option to accelerate the regeneration of bone tissue. In this study, both femurs of male Wistar rats (30 animals) were injured with a drill and the effect of LLLT using a laser diode (100 mW at 660 nm) in the bone matrix on the left paw measured. LLLT effect on the healing bone tissue matrix was evaluated by a combination of immunohistochemical histomorphometry, confocal immunofluorescence microscopy and isolation and characterization of glycosaminoglycans. Histomorphometric analysis showed that LLLT increased bone matrix and showing more organized. Alcian Blue and PAS staining seems to suggest differential glycosaminoglycans and glycoproteins. The data showed increased expression of chondroitin sulfate and hyaluronic acid, after reduction as the LLLT and mature bone, resembling the expression of osteonectin and biglycan. The difference in expression of siblings (DMP‐1, OPN and BSP) is in accordance with the repair accelerated bone formation after the application of LLLT as compared with control. The expression of osteonectin and osteocalcin supports their role in bone mineralization protein, indicating that LLLT accelerates this process. The overall data show that LLLT bone changes dynamic array, shortening the time period involved in the bone repair.  相似文献   

9.
The structures of rat liver and heart plasma membranes were studied with the 5-nitroxide stearic acid spin probe, I(12,3). The polarity-corrected order parameters (S) of liver and heart plasma membranes were independent of probe concentration only if experimentally determined low I(12,3)/lipid ratios were employed. At higher probe/lipid ratios, the order parameters of both membrane systems decreased with increasing probe concentration, and these effects were attributed to enhanced nitroxide radical interactions. Examination of the temperature dependence of approximate and polarity-corrected order parameters indicated that lipid phase separations occur in liver (between 19 degrees and 28 degrees C) and heart (between 21 degrees and 32 degrees C) plasma membranes. The possibility that a wide variety of membrane-associated functions may be influenced by these thermotropic phase separations is considered. Addition of 3.9 mM CaCl2 to I(12,3)-labeled liver plasma membrane decreased the fluidity as indicated by a 5% increase in S at 37 degrees C. Similarly, titrating I(12,3)-labeled heart plasma membranes with either CaCl2 or LaCl3 decreased the lipid fluidity at 37 degrees C, although the magnitude of the La3+ effect was larger and occurred at lower concentrations than that induced by Ca2+; addition of 0.2 mM La3+ or 3.2 mM Ca2+ increased S by approximately 7% and 5%, respectively. The above cation effects reflected only alterations in the membrane fluidity and were not due to changes in probe--probe interactions. Ca2+ and La3+ at these concentrations decrease the activities of such plasma membrane enzymes as Na+, K+-ATPase and adenylyl cyclase, and it is suggested that the inhibition of these enzymes may be due in part to cation-mediated decreases in the lipid fluidity.  相似文献   

10.
Abstract—We have used a spin-labeled fatty acid to detect changes induced by light and by cGMP in isolated rod outer segment membranes. We chose a spin probe (5-doxylstearic acid) which has the nitroxide group placed on the hydrocarbon chain, so the probe should reside somewhat inside the hydrophobic region of the membrane. We found that light exposures which bleached the rhodopsin also produced a small change in the EPR spectra. The spectral changes are consistent with a small increase in membrane fluidity. Light exposures which bleach rhodopsin are known to activate a phosphodiesterase that markedly decreases the cGMP level in rod outer segment. Therefore, we attempted to vary cGMP levels directly by adding Bu2-cGMP, or indirectly, by adding IBMX, CDTA or ATP to try to inhibit the phosphodiesterase. In each case where the cGMP level is expected to increase, we observed spectral changes in the dark which suggested a small decrease in membrane fluidity. Thus, all of our results with this probe are consistent with the idea that changing the level of cGMP produces changes in membrane fluidity. The light-induced spectral changes we observed required the presence of ATP, and were inhibited by 2mM Ca2+, or by the chelator of divalent cations, CDTA.  相似文献   

11.
The application of microwave dielectric heating techniques for chemical syntheses has attracted considerable interest in recent years. A fundamental understanding of the mechanisms responsible for effective coupling of microwave radiation to liquid and solid chemicals and the establishment of techniques for containing the chemicals safely within a microwave cavity have contributed to the rapid progress in this area. A wide range organic and inorganic reactions have been accelerated using microwave techniques. The rapid syntheses of these compounds can be attributed primarily to superheating effects which result from the effective coupling of microwaves to the polar organic solvent in the containment vessel. Similar methods have been used for accelerating intercalation reactions resulting in the incorporation of organic molecules between the layers of an inorganic host material. In the solid state mixed metal oxides may be synthesized at an accelerated rate if one of the components has a high loss tangent. The ceramic high temperature superconducting materials have been synthesized in this manner and have utilized the high loss tangent of copper oxide. Metal chlorides, chalcogenides and oxides have also been synthesized directly from the elements using microwave dielectric heating effects resulting from the efficient coupling of microwaves to the particles of metal powder.  相似文献   

12.
A low level14CO2 counting system is described. This system was used to process several thousand CO2 samples derived from atmospheric collections at various altitudes. Special features include counter construction utilizing electrolytic copper and shielding with neutron moderating and absorbing paraffin containing sodium metaborate. The effect of steel shielding thickness is shown, and the anticoincidence counters are described. Purification of the CO2 for proportional counting is discussed.Work performed under the auspices of the U.S. Department of Energy, under Contract No. W-31-109-ENG-38.  相似文献   

13.
The effect of polar and nonpolar low molar mass diluents on the microstructure of lightly sulfonated polystyrene (SPS) ionomers was studied using electron spin resonance spectroscopy, small-angle x-ray scattering, and dynamic mechanical analysis. Nonpolar diluents primarily affected the hydrocarbon - rich phase, while polar diluents partitioned into the ion-rich regions and disrupted the supramolecular structure. The ionic clusters remained intact, even at elevated temperatures, upon the addition of nonpolar solvents such as dodecane and dioctylphthalate. More polar solvents such as methanol and glycerol swelled the ionic domains and promoted increased mixing of the two phases.  相似文献   

14.
Stop-flow experiments exploiting the fluorescence of cis-parinaric acid in monounsaturated lipid vesicles allow the model membrane behaviour, notably the membrane fluidity, to be correlated to the cis:trans lipid ratios.  相似文献   

15.

In this paper, by using the microwave irradiation, the dehydration curves of santite (KB5O8·4H2O) were obtained and modeled. By using a different mathematical model, the kinetic parameters of the dehydration process were determined. The dehydration of santite was completed at 180, 105 and 60 min for 360, 600 and 800 W, respectively. The characterization techniques of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy were applied to the obtained santite mineral and dehydrated santite mineral. From the obtained XRD analysis, santite, its powder diffraction file number is 01-072-1688 transformed into an amorphous phase after the microwave dehydration process. From the FT-IR and Raman analyses, it can be said that partial dehydration was achieved due to the disappearance of structural H2O bands but remaining some hydroxyl bands. For the modeling results, Verma model best fits the experimental data obtained from the dehydration and the dehydration activation energy was calculated as 11.92 kW?×?g–1.

  相似文献   

16.
Non-thermal effects of microwaves (MWs) are one of the main issues studied for revising standards. The effects of MW exposure on apoptosis at non-thermal level (48 h, 2.45 GHz, 5 mW/cm2) have been studied. Results obtained assess non-thermal MW effects on Fas, but neither on butyrate- nor on ceramide-induced apoptosis in human Jurkat T-cell line. These data show that MW interacts either with Fas pathway between receptor and caspase-3 activation or on membrane proteins (i.e. Fas receptor or neurosphyngomyelinase).  相似文献   

17.
Monoterpenes (MTs) were known to cause biological membranes perturbation. Here, the interaction of four (eucalyptol, pulegone, terpineol, and thymol) with dipalmitoylphosphatidylcholine (DPPC) liposomes was studied by Raman spectroscopy, differential scanning calorimetry and fluorescence anisotropy. Liposomes were prepared by the thin-film hydration method, and MTs were added to DPPC at various molar percentages (from 0 to 25%). All the studied MT abolished the pre-transition of DPPC membrane and modified the intensity of the Raman peak at 715 cm?1, proving their interaction with the choline head group of phospholipids. MTs decreased also the main transition temperature suggesting their interaction with the alkyl chains of DPPC membrane. Besides, a splitting of the main transition peak was obtained with thymol. The results of fluorescence anisotropy showed that the studied molecules fluidized the liposomal membrane at 25, 41, and 50 °C. A mixture of isomers of terpineol fluidized the membrane more than α-terpineol. The presence of a hydroxyl group in the MT structure seems to improve the membrane fluidizing effect of MTs.  相似文献   

18.
Low level lasers (LLLs) have been shown to induce therapeutic effects in wound healing. However, there have been few LLL studies on burn wounds which may become unsightly, hypertrophic and impair function. Inhibitory effects on the healing of fibrotic wounds, prone to hypertrophy may be expected to reasonably reduce the problems accompanying hypertrophic scarring. The effects of LLL wavelengths and treatment parameters on wound healing cells in vitro often demonstrate meaningful results and without concurrent ethical difficulties of clinical trials. This experiment investigated the effect of an 880 nm, 16 mW GaAlAs diode at 2.4 and 4 J/cm(2) on cell numbers of two human fibroblast cell lines, derived from hypertrophic scar (HF) and normal dermal explants (NF), respectively. After irradiation by 880 nm LLL, cell numbers were measured utilising methylene blue bioassay and read by the spectrophotometer in the same microculture plates. HF and NF exhibited decreased cell numbers as compared to sham-irradiated controls. HF cell number, after 2.4 J/cm(2), was significantly lower on day 5 (P<0.05). The NF cell numbers were significantly lower on day 4 and/or day 5 (P<0.05). The results have implications on hypertrophic wound healing and further studies are required.  相似文献   

19.
The 3alpha-hydroxyl group is a characteristic structural element of all membrane sterol molecules, while the 3-ketone group is more typically found in steroid hormones. In this work, we investigate the effect of substituting the hydroxyl group in cholesterol with the ketone group to produce ketosterone. Extensive atomistic molecular dynamics simulations of saturated lipid membranes with either cholesterol or ketosterone show that, like cholesterol, ketosterone increases membrane order and induces condensation. However, the effect of ketosterone on membrane properties is considerably weaker than that of cholesterol. This is largely due to the unstable positioning of ketosterone at the membrane-water interface, which gives rise to a small but significant number of flip-flop transitions, where ketosterone is exchanged between membrane leaflets. This is remarkable, as flip-flop motions of sterol molecules have not been previously reported in analogous lipid bilayer simulations. In the same context, ketosterone is found to be more tilted with respect to the membrane normal than cholesterol. The atomic level mechanism responsible for the increase of the steroid tilt and the promotion of flip-flops is the decrease in polar interactions at the membrane-water interface. Interactions between lipids or water and the ketone group are found to be weaker than in the case of the hydroxyl group, which allows ketosterone to penetrate through the hydrocarbon region of a membrane.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号