首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 100 毫秒
1.
The adaptive response of the fungus Blakeslea trispora to the oxidative stress induced by iron ions during carotene production in shake flask culture was investigated. The culture response to oxidative stress was studied by measuring the specific activities of catalase (CAT) and superoxide dismutase (SOD). The addition of 1.0 mM of FeCl3 to the medium was associated with a mild oxidative stress as evidenced by remarkable increase of the specific activities of SOD and CAT. On the other hand, the addition 5.0 mM of FeCl3 caused a strong oxidative stress resulting in a drastic decrease in carotene concentration. The oxidative stress in B. trispora changed the composition of the carotenes and caused a significant increase of γ-carotene ratio. The highest concentration of carotenes (115.0?±?3.5 mg/g dry biomass) was obtained in the basal medium without the addition of FeCl3 after 8 days of fermentation. In this case, the carotenes consisted of β-carotene (46.3 %), γ-carotene (40.1 %), and lycopene (13.6 %). The addition of 1.0 mM of FeCl3 into the medium did not change the concentration of carotenes. But, the composition of carotenes was changed with a drastic increase of γ-carotene ratio (61.6 %) and a decrease in β-carotene and lycopene ratio (31.2 and 7.2 %, respectively).  相似文献   

2.
Biodegradable polycaprolactone (PCL) nanosphere encapsulating superoxide dismutase (SOD) and catalase (CAT) were successfully synthesized using double emulsion (w/o/w) solvent evaporation technique. Characterization of the nanosphere using dynamic light scattering, field emission scanning electron microscope, and Fourier transform infrared spectroscopy revealed a spherical-shaped nanosphere in a size range of 812?±?64 nm with moderate protein encapsulation efficiency of 55.42?±?3.7 % and high in vitro protein release. Human skin HaCat cells were used for analyzing antioxidative properties of SOD- and CAT-encapsulated PCL nanospheres. Oxidative stress condition in HaCat cells was optimized with exposure to hydrogen peroxide (H2O2; 1 mM) as external stress factor and verified through reactive oxygen species (ROS) analysis using H2DCFDA dye. PCL nanosphere encapsulating SOD and CAT together indicated better antioxidative defense against H2O2-induced oxidative stress in human skin HaCat cells in comparison to PCL encapsulating either SOD or CAT alone as well as against direct supplement of SOD and CAT protein solution. Increase in HaCat cells SOD and CAT activities after treatment hints toward uptake of PCL nanosphere into the human skin HaCat cells. The result signifies the role of PCL-encapsulating SOD and CAT nanosphere in alleviating oxidative stress.  相似文献   

3.

Background  

The aim of this research was to investigate oxidative stress and immune responses following a dietary polycyclic aromatic hydrocarbon (PAH) exposure in a marine bioindicator organism, the soft shell clam, Mya arenaria. Immune parameters in hemolymph (haemocyte number, efficiency of phagocytosis and haemocyte activity) and assessment of oxidative stress using catalase (CAT) activity and levels of malondialdehyde (MDA) performed on the digestive gland were estimated as biomarkers in clams fed in mesocosm with PAH contaminated phytoplankton. MDA levels and CAT activities were also measured in situ in organisms sampled in a control site (Metis Beach, Québec, Canada) as well as organisms sampled in a site receiving domestic effluents (Pointe-au-Père, Québec, Canada), to assess effects of abiotic variables related to seasonal variations and mixed contamination on the selected parameters.  相似文献   

4.
The effect of N+ implantation on the activities of CAT, POD, SOD, T-AOC and the capacities of scavenging O2 and OH in Blakeslea trispora (−) were studied. Results showed that N+ implantation caused different changes of CAT, POD, SOD, T-AOC activities and cell scavenging O2 and OH capacities. With the implantation dose increasing CAT activity was lower than the control sample, while POD, SOD activities and the scavenging O2 and OH capacities all decreased at the beginning, and then increased lately. At the dose of 6.0×1015 N+ cm−2 T-AOC activity was lowest, while at the dose of 1.2×1015 N+ cm−2 its activity was highest, and this change trend was same to the B. trispora (−) survival rate curve. So we speculated that the changes of these antioxidases activity of B. trispora (−) induced by low-energy N+ probably have some relationship with its “saddle shape” survival rate curve.  相似文献   

5.
It has been confirmed that diabetes mellitus (DM) carries increased oxidative stress. This study evaluated the effects of salidroside from Rhodiolae Radix on diabetes-induced oxidative stress in mice. After induction of diabetes, diabetic mice were administered daily doses of 50, 100 and 200 mg/kg salidroside for 28 days. Body weights, fasting blood glucose (FBG), serum insulin, TC (total cholesterol), TG (triglyceride), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) were measured. Results showed that salidroside possessed hypoglycemic activity and protective effects against diabetes-induced oxidative stress, which could significantly reduce FBG, TC, TG and MDA levels, and at same time increase serum insulin levels, SOD, GPx and CAT activities. Therefore, salidroside should be considered as a candidate for future studies on diabetes.  相似文献   

6.
In vivo progressive effects of UV irradiation on the lens epithelium were studied using various histomorphological and biochemical parameters. Fifteen day old rat pups were exposed to 600 mW/m2 of radiation, including UV-A and UV-B, 12 h daily for 90, 120, 150 and 180 days. Biochemical parameters such as protein-bound and non-protein-bound sulfhydryl groups in both soluble and insoluble fractions and enzymes, which play an important role in combating the oxidative stress, were studied. Decreased cell density of lens epithelial cells (LEC) was observed in all three zones along with the decrease in the levels of soluble sulfhydryls (S-SH), glutathione reductase (GR), superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT). On the other hand, an increase in insoluble sulfhydryls was observed. Because of the decrease in S-SH and GR activities, the LEC became vulnerable to oxidative stress. Decreased activities of SOD, GPx and CAT suggest elevated oxidative stress. This effect of UV radiation may lead to cell death that may be responsible for the observed decrease in the cell density in all three zones of the lens epithelium.  相似文献   

7.
Taxol is the most important member of the clinically useful natural anticancer drug. An endophytic fungus Chaetomella raphigera (strain TAC-15) was isolated from a medicinal plant Terminalia arjuna and screened for its potential in Taxol production. The fungus was identified based on the morphology of the fungal culture and the characteristics of the spores. This fungus was grown in MID liquid medium and analyzed by chromatographically and spectrometrically for the presence of Taxol. The amount of Taxol produced by this endophytic fungus was quantified by HPLC which showed that it produced 79.6 μg/L, and further confirmative analyses were done by using UV, IR, FAB mass spectroscopy, and NMR spectroscopy. Thus, the fungus can serve as a potential material for fungus engineering to improve the production of Taxol.  相似文献   

8.
In the present study, we explore the feasibility of Raman spectroscopy for intracellular monitoring of carotenoid in filamentous fungi Blakeslea trispora. Although carotenoid production from this fungus has been extensively studied through various chromatographic methods and ultraviolet-visible spectroscopy, no intracellular monitoring has been demonstrated until now. The intensity of the Raman spectrum, and more conveniently that of the strongest ν 1 carotenoid band at ∼1,519 cm−1, exhibits a good linear correlation with the carotenoid content of the sample as determined by high-performance liquid chromatography (HPLC) and ultraviolet-visible (UV-Vis) spectroscopy. Our results suggest that Raman spectroscopy can serve as an alternative method for the study and quantification of carotenoid in batch-mated submerged cultivations of B. trispora and similar organisms. Although not as accurate as HPLC, it allows a rapid sampling and analysis, avoiding the prolonged and tedious classical isolation procedures required for carotenoid determination by HPLC and UV-Vis spectroscopy.  相似文献   

9.
Abstract

In the study, we treated C6 rat glioma cells with 25?mg/ml Dulcitol for 24?h. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were used to detect cellular growth. The measurements of the superoxide dismutase (SOD), malondialdehyde (MDA) and catalase (CAT) were used to assess oxidative stress level. Western was performed to detect the autophagy and apoptosis expression. The data showed that Dulcitol significantly decreased the cell viability, upregulated the Bax level in mitochondria and the Cytochrome C level in cytoplasm, and downregulated anti-apoptotic protein Bcl-xl. Moreover, it enhanced MDA level, reduced CAT and SOD activities, decreased LC3-II/LC3-I ratio, and increased P62 expression. However, rapamycin increased autophagy level and cell viability, and decreased ROS in Dulcitol treated C6 cells. Moreover, Dulcitol inhibited the glioma growth and enhanced survival in vivo. These results suggest that Dulcitol evidently increase cellular ROS levels and apoptosis in glioma cells, which can be significantly regulated by autophagy.  相似文献   

10.
Nano zinc oxide (nZnO) is increasingly used in sunscreen products, with high potential of being released directly into marine environments. This study primarily aimed to characterize the aggregate size and solubility of nZnO and bulk ZnO, and to assess their toxicities towards five selected marine organisms. Chemical characterization showed that nZnO formed larger aggregates in seawater than ZnO, while nZnO had a higher solubility in seawater (3.7 mg L−1) than that of ZnO (1.6 mg L−1). Acute tests were conducted using the marine diatoms Skeletonema costatum and Thalassiosia pseudonana, the crustaceans Tigriopus japonicus and Elasmopus rapax, and the medaka fish Oryzias melastigma. In general, nZnO was more toxic towards algae than ZnO, but relatively less toxic towards crustaceans and fish. The toxicity of nZnO could be mainly attributed to dissolved Zn2+ ions. Furthermore, molecular biomarkers including superoxide dismutase (SOD), metallothionein (MT) and heat shock protein 70 (HSP70) were employed to assess the sublethal toxicities of the test chemicals to O. melastigma. Although SOD and MT expressions were not significantly increased in nZnO-treated medaka compared to the controls, exposure to ZnO caused a significant up-regulation of SOD and MT. HSP70 was increased two to fourfold in all treatments indicating that there were probably other forms of stress in additional to oxidative stress such as cellular injury.  相似文献   

11.
The role of pyruvate and ascorbate in the regulation of superoxide dismutase (SOD); catalase (CAT); glutathione peroxidase enzymes; and, therefore, membrane lipid peroxidation (LPO) levels in Fusarium acuminatum was investigated in media containing either glycerin or glucose as a carbon source, depending on the incubation period, in the range of 5–25 g/L. Increasing SOD activity between d 9 and 16 of the incubation period showed a positive correlation with a significant increase in pyruvate production up to 15 g/L of glycerin and glucose. In addition, maximum ascorbate production was observed at 15 g/L of glycerin as 82.5 ± 2.1 and 20 g/L of glucose as 54±1.51, whereas CAT activity decreased with an increased concentration of both carbon sources. When compared with the LPO levels determined in media supplemented with glycerin and glucose, the minimum LPO level was 1.88±0.028 nmol of malondialdehyde/g wet wt at 15 g/L of glycerin on d 16, at which it was also observed to have a maximum pyruvate and ascorbate production and SOD, CAT, and GSH-Px activities of 75±1.42 μg/mL, 82.5±2.1 μg/mL, 32.5±0.634 μg/mL, 86.8±2.58 IU/mg, and 1.867 IU/mg, respectively. These results indicate that the biosynthesis of pyruvate and ascorbate may be involved in the regulation of antioxidant enzymes, depending on the glycerin and glucose concentrations, and also this defense network was effective in preventing membrane damage from oxidative stress.  相似文献   

12.
The air-dried aerial parts of Lavandula angustifolia Mill, a traditional Uygur herbal drug, is used as resuscitation-inducing therapy to treat neurodisfunctions, such as stroke. This study was designed to assess the neuroprotective effects of lavender oil against ischemia/reperfusion (IR) injury in mice. Focal cerebral ischemia was induced by the intraluminal occlusion method with a nylon string. The neurodysfuntion was evaluated by neurological deficit and the infarct area was showed by 2,3,5-triphenyltetrazolium chloride (TTC) staining. The histopathological changes were observed by hematoxylin and eosin staining. The levels of mitochondria-generated reactive oxygen species (ROS), malondialdehyde (MDA) and carbonyl, the ratio of reduced glutathione (GSH)/glutathione disulfide (GSSG), the activities of superoxide dismutase (SOD), catalase (CAT) and glutathion peroxidase (GSH-Px) in brain tissue were measured to estimate the oxidative stress state. Neurological deficit, infarct size, histopathology changes and oxidative stress markers were evaluated after 22 h of reperfusion. In comparison with the model group, treatment with lavender oil significantly decreased neurological deficit scores, infarct size, the levels of MDA, carbonyl and ROS, and attenuated neuronal damage, upregulated SOD, CAT, GSH-Px activities and GSH/GSSG ratio. These results suggested that the neuroprotective effects of lavender oil against cerebral ischemia/reperfusion injury may be attributed to its antioxidant effects.  相似文献   

13.
The effect of sound wave stress on important medicinal plant, Dendrobium candidum Wall. ex Lindl, was investigated, including the responses on malondialdehyde (MDA) content, the activities change of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX). Results were found that the activities of SOD, CAT, POD and APX enhanced totally in different organs of D. candidum, as leaves, stems and roots, in response to the stress. Furthermore there happened similar shift of antioxidant enzymes activities, which increased in the initial stimulation and decreased afterwards. Data showed SOD, CAT, POD and APX activities ascended to max at day 9, 6, 9 and 12 in leaves, at day 9, 6, 12 and 9 in stems, and at day 12, 6, 9 and 9 in roots, respectively. As a lipid peroxidation parameter, MDA content in different organs increased in the beginning, dropped afterward, and increased again in the late. Anyway the total trend was the rise of MDA level compared to the control. It was interesting that the MDA content appeared the lowest levels almost when the antioxidant enzymes activities were up to the highest. Our results demonstrated the different organs of D. candidum might produce accumulation of active oxygen species (AOS) under initial treatment of sound wave stress. Later AOS might start to reduce due to the enhancement of antioxidant enzymes activities treated by the stress. The data revealed that the antioxidant metabolism was to be important in determining the ability of plants to survive in sound stress, and the up regulation of these enzymes activities would help to reduce the build up of AOS, which could protect plant cells from oxidative damage. Moreover, different cell compartments might activate different defensive system to reduce excessive amount of AOS. Finally the mechanism of this action was also discussed simply.  相似文献   

14.
Damage caused by oxidative stress is involved in many types of diseases, including breast cancer. Our aim was to detect the oxidative stress parameters and blood plasma changes with differential scanning calorimetry (DSC) in breast cancer patients. The study included 40 adult breast cancer women who were grouped according to tumor diameter, regional lymph node metastases, proliferative activity, receptor status and postoperative chemotherapy. To monitor oxidative stress, malondialdehyde, oxygen free radicals (OFRs), activity of myeloperoxidase (MPO), superoxide dismutase (SOD) and catalase (CAT) were measured. Denaturation of plasma components was detected in Setaram Micro DSC-II calorimeter. The total production of OFRs, the MPO activity and lipidperoxidation were significantly increased in each breast cancer patients considering the tumor size, the metastatic lymph nodes, the proliferation activity and receptor status compared with healthy controls (p < 0.05). These pro-oxidants were slightly elevated without chemotherapy, but their values were increased significantly in chemotherapy-receiving group. The activity of SOD and CAT was significantly decreased in all groups, and in regard to the chemotherapy, they were changed significantly parallel to the severity of disease. Regarding to both the increased tumor diameter and the increased number of affected lymph nodes, DSC measurements showed a strong relationship between the maximum excess heat capacity (Cpmax) of the blood plasma and the severity of disease. The study demonstrated that oxidative stress is implicated in breast carcinoma and chemotherapy aggravates these changes which confirmed the plasma DSC measurements also.  相似文献   

15.
Subcellular distribution of Superoxide dismutase (SOD), catalase (CAT), selenium (SC) dependent glutathione peroxidase, and Se-independent glutathione peroxidase (GSH-Px) activities were detected in different tissues (hepatopancreas, muscle, and gill) of freshwater prawnsMacrobrachium malcolmsonii andMacrobrahium lamarrei lamarrei. CAT and SOD were found almost equally between the mitochondrial and cytosolic fraction. Both Se-dependent and Se-independent GSH-Px activities were mainly found in cytosolic fraction.  相似文献   

16.
Background: Tomato by-products contain a great variety of biologically active substances and represent a significant source of natural antioxidant supplements of the human diet. The aim of the work was to compare the antioxidant properties of a by-product from an ancient Tuscan tomato variety, Rosso di Pitigliano (RED), obtained by growing plants in normal conditions (-Ctr) or in drought stress conditions (-Ds) for their beneficial effects on vascular related dysfunction. Methods: The antioxidant activity and total polyphenol content (TPC) were measured. The identification of bioactive compounds of tomato peel was performed by HPLC. HUVEC were pre-treated with different TPC of RED-Ctr or RED-Ds, then stressed with H2O2. Cell viability, ROS production and CAT, SOD and GPx activities were evaluated. Permeation of antioxidant molecules contained in RED across excised rat intestine was also studied. Results: RED-Ds tomato peel extract possessed higher TPC than compared to RED-Ctr (361.32 ± 7.204 mg vs. 152.46 ± 1.568 mg GAE/100 g fresh weight). All extracts were non-cytotoxic. Two hour pre-treatment with 5 µg GAE/mL from RED-Ctr or RED-Ds showed protection from H2O2-induced oxidative stress and significantly reduced ROS production raising SOD and CAT activity (* p < 0.05 and ** p < 0.005 vs. H2O2, respectively). The permeation of antioxidant molecules contained in RED-Ctr or RED-Ds across excised rat intestine was high with non-significant difference between the two RED types (41.9 ± 9.6% vs. 26.6 ± 7.8%). Conclusions: RED-Ds tomato peel extract represents a good source of bioactive molecules, which protects HUVECs from oxidative stress at low concentration.  相似文献   

17.
The intravenous administration of bienzyme superoxide dismutase–chondroitin sulfate–catalase (SOD–CHS–CAT) conjugate in rats with endotoxic shock induced by a lipopolysac-charide bolus in the preventive and therapeutic regimens demonstrated the possible effective use of antioxidant agents not only for preventing the oxidative stress damage (as was considered previously), but also for its therapy. The results confirmed the importance of investigations of pathogenesis of vascular injury and the role of oxidative stress in it. The intravenous administration of the SOD–CHS–CAT conjugate in the therapeutic regimen during endotoxic shock development in rats was found to induce a variety of effects on the pathological process, besides preserving NO from conversion to peroxynitrite via reaction with the superoxide radical. These results, together with literature data, indicate good prospects of the research into NO-independent therapeutic effect of the SOD–CHS–CAT conjugate and the importance of studying the mechanism of its action using cardiovascular injury models associated with vasoactive agents other than NO.  相似文献   

18.
19.
The effect of menadione (MQ; 2-methyl-1,4-naphtoquinone), a superoxide-generating agent, on the natural biodegradation system in the medicinal white rot fungus Phellinus pini was determined. While measuring the activities of extracellular manganese-dependent peroxidase (MnP) and intracellular chitinase, it was found that the application of MQ (0.75 mM) distinctly stimulated the activities of these enzymes in comparison to the control values (without MQ). Using the capillary electrophoresis (CE) method, an increase in the extracellular oxalic acid (OXA) concentration was detected during the first days after the addition of MQ. It was observed that the rate of intracellular proteolysis at pH 3.5 evidently decreased under oxidative stress conditions. Contrary to these results, the activities of serine proteases at pH 9.5 measured against fluorogenic peptide substrates distinctly increased in stressed cultures. The MQ treatment also caused an evident increase in the catalase (CAT) activity, as well as the levels of superoxide anion radicals (SORs), formaldehyde (FA), and phenolic compounds (PHC) in the experimental cultures. The results obtained confirm that prooxidants may find application as an effective way to stimulate biotechnological production of MnP and chitinase by white rot fungi.  相似文献   

20.
Microcystins (MCs) are a family of natural toxins produced by cyanobacteria (blue-green algae). Microbial degradation is considered an efficient method for eliminating cyanobacteria and MCs in environmental conditions. This study examines the ability of Trichaptum abietinum 1302BG, a white rot fungus, to degrade microcystin-LR in the harmful algal culture of Microcystis aeruginosa PCC7806. Results showed that microcystin-LR could not be detected by high-performance liquid chromatography after 12 h in algal culture incubated with the fungus. There were also high activities of catalase and peroxidase in algal culture incubated with the fungus. However, similar to the control, they decreased to normal levels after 72 h. Meanwhile, the micronucleus test in the toxicity studies revealed that the degraded algal culture had low toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号