首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of a uniform electromagnetic field on the stability of a thin layer of an electrically conducting viscoelastic liquid flowing down on a nonconducting inclined plane is studied under the induction-free approximation. Long-wave expansion method is used to obtain the surface evolution equation. The stabilizing role of the magnetic parameter M and the destabilizing role of the viscoelastic parameter Γ as well as the electric parameter E on this flow field are established. A novel result which emerges from our analysis is that the stabilizing effect of M holds no longer true for both viscous and viscoelastic fluids in the presence of electromagnetic field. It is found that when E exceeds a certain critical value depending on Γ, magnetic field exhibits the destabilizing effect on this flow field. Indeed, this critical value decreases with the increase of the viscoelastic parameter Γ since it has a destabilizing effect inherently. Another noteworthy result which arises from the weakly nonlinear stability analysis is that both the subcritical unstable and supercritical stable zones are possible together with the unconditional stable and explosive zones for different values of Γ depending on the wave number k.  相似文献   

2.
The magnetohydrodynamics(MHD) convection flow and heat transfer of an incompressible viscous nanofluid past a semi-infinite vertical stretching sheet in the presence of thermal stratification are examined.The partial differential equations governing the problem under consideration are transformed by a special form of the Lie symmetry group transformations,i.e.,a one-parameter group of transformations into a system of ordinary differential equations which are numerically solved using the Runge-Kutta-Gillbased shooting method.It is concluded that the flow field,temperature,and nanoparticle volume fraction profiles are significantly influenced by the thermal stratification and the magnetic field.  相似文献   

3.
The stability of a conducting fluid saturating a porous medium, in the presence of a uniform magnetic field, is investigated using the Brinkman model. In the first part of the paper constant-flux thermal boundary conditions are considered for which the onset of convection is known to correspond to a vanishingly small wave number. The external magnetic field is assumed to be aligned with gravity. Closed form solutions are obtained, based on a parallel flow assumption, for a porous layer with either rigid-rigid, rigid-free or free-free boundaries. In the second part of the paper, the linear stability of a porous layer, heated isothermally from below, is investigated using the normal mode technique. The external magnetic field is applied either vertically or horizontally. Solutions are obtained for the case of a porous layer with free boundaries. Results for a pure viscous fluid and a Darcy (densely packed) porous medium emerge from the present analysis as limiting cases.  相似文献   

4.
An analysis is made of Hall effects on the steady shear flow of a viscous incompressible electrically conducting fluid past an infinite porous plate in the presence of a uniform transverse magnetic field. It is shown that for suction at the plate, steady shear flow solution exists only when S2<Q, where S and Q are the suction and magnetic parameters, respectively. The primary flow velocity decreases with increase in Hall parameter m. But the cross-flow velocity first increases and then decreases with increase in m. Similar results are obtained for variation of the induced magnetic field with m. It is further found that for blowing at the plate, steady shear flow solution exists only when , where S1 is the blowing parameter.  相似文献   

5.
The steady two-dimensional flow of an incompressible viscous and electrically conducting fluid over a non-linearly semi-infinite stretching sheet in the presence of a chemical reaction and under the influence of a magnetic field is analyzed. The equations governing the flow and concentration field are reduced to a system of coupled non-linear ordinary differential equations. These non-linear differential equations are solved numerically by using the shooting method. The numerical results for the concentration field are presented through graphs.  相似文献   

6.
Starting with the Navier-Stokes equation we use the Lyapunov-Schmidt method to investigate the nature of the loss of stability of Couette flow between cylinders as the Reynolds number passes through its critical value. We consider the rotation of the cylinders in opposite directions with the ratio of the angular velocities such that the role of the most dangerous disturbances passes over from rotationally symmetric to nonrotationally symmetric disturbances. Branching nonstationary secondary flows (autooscillations) are found in the form of azimuthal waves; the longitudinal wave number and the azimuthal wave number m are assumed given. The amplitude of autooscillations and the wave velocity are calculated for m = 1, and it is shown that depending on the value of both weak excitation of stable and strong excitation of unstable autooscillations are possible and the wave number for which the critical Reynolds number is a minimum corresponds to a stable wave regime in the supercritical region. The linear problem of the stability of the circular flow of a viscous fluid with respect to nonrotationally symmetric disturbances is discussed in [1–3]. Di Prima [1] solved the problem numerically by the Galerkin method when the gap is small and the cylinders rotate in the same direction. Di Prima's analysis is extended in [2] to cylinders rotating in opposite directions, and in [3] it is extended to gaps which are not small. The nonlinear stability problem is treated in [4], where for fixed = 3 and cylinders rotating in opposite directions the axisymmetric stationary secondary flow the Taylor vortex is calculated. The formation of azimuthal waves in the fluid between the cylinders was studied experimentally in detail by Coles [5].Translated from Zhurnal Prikladnoi Mekhanika i Tekhnicheskoi Fiziki, No. 2, pp. 68–75, March–April, 1976.  相似文献   

7.
This work is related to the flow of an electro-conducting Newtonian fluid presenting thermoelectric properties in the presence of magnetic field. The flow is considered to be governed an incompressible viscous fluid. The electro-conducting thermofluid equation heat transfer with one relaxation time is derived. The state space formulation developed in Ezzat (Can. J. Phys. Rev. 86:1242–1450, 2008) or one-dimensional problems is introduced. The Laplace transform technique is used. The resulting formulation is applied to a thermal shock problem; that is, a problem of a layer media and a problem for the infinite space in the presence of heat sources. A numerical method is employed for the inversion of the Laplace transforms. Numerical results are given and illustrated graphically for each problem. The effects of thermoelastic properties on the thermofluid flow are studied.  相似文献   

8.
The stability of a steady flow of incompressible, conducting liquid down an inclined plane in the presence of longitudinal and transverse magnetic fields is studied. Solutions of the linearized magnetohydrodynamic equations with corresponding boundary conditions are found on the assumption that the Reynolds number Rg and the wave number are small. It is shown that the longitudinal magnetic field plays a stabilizing role. It is known [1] that the flow of a viscous liquid over a vertical wall is always unstable. In this article it is shown that the instability effect at small wave numbers may be eliminated if the longitudinal magnetic field satisfies the conditions found. The case when the Alfvén number and the wave number are small and the Reynolds number is finite is also examined.  相似文献   

9.
A family of two-dimensional divergent channels with piecewise-constant velocity and pressure distributions over the wall is considered. The method of matched asymptotic expansions is applied to study the two-dimensional viscous incompressible flow at high but subcritical Reynolds numbers in the vicinity of a pressure jump point on the channel wall. It is shown that if the pressure difference is of the order O(Re?1/4), then in the vicinity of this point a classical region of interaction between the viscous boundary layer on the wall and the outer inviscid flow occurs. The problem formulated for the interaction region is solved numerically. The asymptotic values of the pressure difference corresponding to separationless flow are determined and the separation flow patterns are constructed.  相似文献   

10.
Summary A prescribed source of magnetism moves at constant speed through a viscous conducting incompressible fluid with an aligned uniform magnetic field. The velocity and magnetic fields induced at a distance from the source are calculated. The induced fields are also calculated for the case in which the applied field is absent. Although no special symmetry or alignment is assumed, the source is ideal in the sense that enclosures (wires or magnets) are infinitesimal in at least two dimensions. Dynamical interactions will occur in a viscous fluid and their effect in the far field is estimated.As a consequence of finite conductivity and viscosity, the usual wakes are present which trail or lead the source depending upon the sign of (1–A 2), where A is the ratio of the source speed to the Alfvén speed in the undisturbed fluid. Outside the wake the total perturbation magnetic field due to the source is the static field plus a monopole field, divided by (1–A 2).An estimate is also made of the rate at which energy is dissipated as a consequence of viscous interactions and ohmic heating throughout the fluid, outside the immediate vicinity of the source.Geo-Astrophysics Laboratory.Plasma Physics Laboratory.  相似文献   

11.
The results of a wind-tunnel experiment on the joint action of periodic acoustic fast-mode disturbances of the outer flow and disturbances generated at the leading edge of a plate on the hypersonic (M = 21) viscous shock layer on the plate are presented. The possibility of positively controlling the intensity of density fluctuations in the plate shock layer by means of disturbances introduced from the leading edge is shown. Direct numerical simulation of the suppression (enhancement) of disturbances under the simultaneous action on the shock layer of the two-dimensional fast-mode acoustic waves in the outer flow and the source of two-dimensional suction/injection disturbances near the leading edge of the plate is performed under the experimental conditions. The experimental and calculated results are shown to be in good agreement.  相似文献   

12.
Stabilization of multi-layer Hele-Shaw flows is studied here by including the influence of Rayleigh?CTaylor instability in our earlier work (Daripa, J. Stat. Mech. 12:28, 2008a) on stabilization of multi-layer Saffman?CTaylor instability. Furthermore, this article goes beyond our previous work with few extensions, improvements, new interpretations, and clarifications on the use of some terminologies. Results of two complete studies have been presented: the first investigates the effect of individually unstable interfaces on the overall stability of the flow, and the second studies the cumulative effect of unstable interfaces as well as unstable internal viscous layers. In each case, modal and absolute upper bounds on the growth rate are reported. Next, these bounds are used to investigate (i) stabilization of long waves on various interfaces; (ii) stabilization of all waves on all interfaces in comparison to pure Taylor instability; (iii) stabilization of disturbances on interior interfaces instead of exterior interfaces. In the first study, notions of partial and total stabilization with respect to the pure Taylor growth rate are introduced. Then necessary and sufficient conditions for partial and total stabilizations are found. Proof of stabilization of long waves on one of the two external interfaces in multi-layer flows is also proved. In the second study, an absolute upper bound is obtained in the presence of stabilizing density stratification across each internal interface even though all interfaces and layers have unstable viscous profiles. Exact results on the upper bounds, and necessary and sufficient conditions for control of instabilities driven by stable/unstable density stratification, unstable viscous layers and unstable interfaces are new and may be relevant to explain observed phenomena in many complex flows generating these kinds of viscous profiles and density stratification as they evolve. The present work builds upon and goes much further in details and new results than our previous work. The gravity effect included here brings with it restrictions which have not been addressed before in this multi-layer context.  相似文献   

13.
In this paper we study the stability of the magnetostatic equilibrium through a relaxation of a magnetic field B in perfectly conducting compressible and viscous fluid.We establish stability criterion of a large class of Beltrami flows to any admissible displacement about the equilibrium configuration. We show that the field is stable to any displacement with the same 2π-periodicity as the basic flow, except the case where perturbations with wavelength much greater than the scale of the basic flow are included.  相似文献   

14.
Summary This discussion which is restricted to the flow of heterogeneous, incompressible, inviscid and conducting liquids between two nonrotating coaxial cylinders is divided into three parts. In the first part the problem in question is investigated with an applied radial magnetic field. A sufficient condition for stability is found. In particular, if the steady flow velocity is uniform it is shown that the flow is always stable.In part two the stability of homogeneous viscous conducting fluids through two fixed coaxial cylinders with an applied radial magnetic field has been discussed. A sufficient condition for stability is derived and an upper bound for the amplification factor is given.In part three the problem in question is treated with an applied axial magnetic field. A sufficient condition for stability is given and some particular cases are investigated.  相似文献   

15.
The purpose of this paper is to investigate, by flow simulations in a uniform pore-space geometry, how the co and countercurrent steady state relative permeabilities depend on the following parameters: phase saturation, wettability, driving force and viscosity ratio. The main results are as follows: (i) with few exceptions, relative permeabilities are convex functions of saturation; (ii) the cocurrent relative permeabilities increase while the countercurrent ones decrease with the driving force; (iii) with one exception, phase 2 relative permeabilities decrease and phase 1 relative permeabilities increase with the viscosity ratio M=1/2; (iv) the countercurrent relative permeabilities are always less than the cocurrent ones, the difference being partly due to the opposing effect of the viscous coupling, and partly to different levels of capillary forces; (v) the pore-level saturation distribution, and hence the size of the viscous coupling, can be very different between the cocurrent and the countercurrent cases so that it is in general incorrect to estimate the full mobility tensor from cocurrent and countercurrent steady state experiments, as suggested by Bentsen and Manai (1993).(Now at AS Norske Shell, Norway.) e-mail:  相似文献   

16.
We present here both one- and two-dimensional models for turbulent flow through heterogeneous unbounded fluid saturated porous media using non-linear Forchheimer extended Darcy (DF) equation in the presence of gravitational field. The fluid is initially at rest and sets in motion due to a uniform horizontal density gradient. It is shown that a purely horizontal motion develops satisfying non-linear DF equation. Analytical solutions of this non-linear Initial Value Problem are obtained and limiting solutions valid for the Darcy regime in the case of laminar flow are derived. A measure of the stability of the flow is discussed briefly using Richardson number. The comparison between the nature of the solutions satisfying the non-linear and linear initial value problems are made. We found that even in the case of turbulent flow the vertical density gradient varies continuously both with space z and time t but the horizontal density gradient remains unchanged. The existence and uniqueness theorem of the Initial Value Problem is proved. The stability of these solutions are discussed and it is shown that the solutions are qualitatively and quantitatively different for and in the upper and lower half of the region. In particular, we have shown that the solution which is stable for infinitesimal perturbations is also stable for arbitrary perturbations both in time and space.In the case of two-dimensional motion, a piecewise initial density gradient with continuous distribution of density, stream function formulation is used and the solutions are obtained using time-series analysis. In this case solution shows crowding of the density profiles in the lower-half of the channel reflecting an increase in density gradient and incipient of frontogenesis there, because of the increase in circulation of the flow due to piecewise initial density gradient.  相似文献   

17.
Summary The effect of uniform high suction on the steady flow of conducting viscous liquid due to a rotating disc, in the presence of a transverse magnetic field is considered. Series solutions for velocity components are obtained in descending powers of the suction parameter (a). The solutions, thus obtained, are valid for small values of m (= B 0 2 /). Tables for displacement thickness, momentum thickness, and velocity components are given for different values of a and m.  相似文献   

18.
The velocity distribution between two sidewalls is M-shaped for the MHD channel, flows with rectangular cross section and thin conducting walls in a strong transverse magnetic field. Assume that the dimensionless numbersR m ?1,M, N? 1, and σ* and that the distance between two perpendicular walls is very long in comparison with the distance between two sidewalls. First, the equation for steady flow is established, and the solution of M-shaped velocity distribution is given. Then, an equation for stability of small disturbances is derived based on the velocity distribution obtained. Finally, it is proved that the stability equation for sidewall flow can be transformed into the famous Orr-Sommerfeld equation, in addition, the following theorems are also proved, namely, the analogy theorem, the generalized Rayleigh's theorem, the generalized Fjørtoft's theorem and the generalized Joseph's theorems.  相似文献   

19.
The results of numerical calculations of the stability of axisymmetric swirled flows in a viscous vortex embedded in a supersonic cocurrent stream with a constant circulation of the azimuthal velocity component are presented. The stability characteristics of the swirled three-dimensional viscous flow in the streamwise vortex are determined on the basis of the linearized system of Navier-Stokes equations for a viscous heat-conducting gas under the assumption that the basic undisturbed flow is locally plane-parallel. The disturbed flow stability is studied in the temporal formulation with respect to both symmetric and asymmetric three-dimensional waves traveling along the vortex axis and corresponding to both positive and negative values of the azimuthal wavenumber. It is shown that at external inviscid flow Mach numbers M = 2 and 3 thermal energy supply in a small region near the vortex axis leads to considerable restructuring of the basic undisturbed flow in the vicinity of the vortex core, the growth of the adverse pressure gradient along the vortex axis, and a significant change in the small perturbation stability and behavior.__________Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, 2005, pp. 71–80. Original Russian Text Copyright © 2005 by Kazakov.  相似文献   

20.
This paper documents the numerical investigation of the effects of non-uniform magnetic fields, i.e. magnetic-ribs, on a liquid–metal flowing through a two-dimensional channel. The magnetic ribs are physically represented by electric currents flowing underneath the channel walls. The Lorentz forces generated by the magnetic ribs alter the flow field and, as consequence, the convective heat transfer and wall shear stress. The dimensionless numbers characterizing a liquid–metal flow through a magnetic field are the Reynolds (Re) and the Stuart (N) numbers. The latter provides the ratio of the Lorentz forces and the inertial forces. A liquid–metal flow in a laminar regime has been simulated in the absence of a magnetic field (ReH = 1000, N = 0), and in two different magnetic ribs configurations for increasing values of the Stuart number (ReH = 1000, N equal to 0.5, 2 and 5). The analysis of the resulting velocity, temperature and force fields has revealed the heat transport phenomena governing these magneto-hydro-dynamic flows. Moreover, it has been noticed that, by increasing the strength of the magnetic field, the convective heat transfer increases with local Nusselt numbers that are as much 27.0% larger if compared to those evaluated in the absence of the magnetic field. Such a convective heat transfer enhancement has been obtained at expenses of the pressure drop, which increases more than twice with respect to the non-magnetic case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号