首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We explored the interactions of gas molecules such as H2, CH4, C2H4, C2H6, CO2, and CS2 sandwiched by two pyrazine (Pz) molecules, which were employed as a model of organic linker in the Hofmann-type metal?Corganic framework (MOF). The MP2.5/aug-cc-pVTZ method was employed here, because this method presents almost the same binding energy as that calculated by the CCSD(T)/aug-cc-pVDZ with MP2.5-evaluated basis set extension effects to aug-cc-pVTZ basis set. The binding energy of the gas molecule increases in the order H2?<?CH4?<?CO2?<?C2H4????C2H6?<?CS2. The energy decomposition analysis of the interaction energy indicates that the electrostatic term presents the largest contribution to the interaction energy at the Hartree?CFock level. However, the dispersion interaction provides dominant contribution to the total binding energy at correlated level. We newly found a linear correlation between the z-component of polarizability of gas molecules and dispersion energy, where the z-axis was taken to be perpendicular to two Pz rings. These results are useful for understanding and predicting the binding energy of the gas molecule with the organic linkers of MOF.  相似文献   

2.
Rate constants, in some cases also activation energies and energy dependences, were measured for the capture of low-energy electrons by the molecules CCl4, CHCl3, CH2Cl2, CnH2n+1 Cl(n = 1 to 4), C2H3Cl, COCl2, NOCl, CNCl and Cl2 Potential energy curves were calculated for a number of negative ions.For ineffective scavengers the possibility of contributing scattering effects on the observed changes in signal intensity upon electron energy variation is indicated. In CCl4 the observed energy dependence suggests the existence of intermediate negative ions. For Cl2 good agreement was obtained between the calculated curves based on experimental data for electron capture and a recent self-consistent field analysis.  相似文献   

3.
Smita Rai 《Tetrahedron》2007,63(11):2455-2465
Three porphyrin building blocks with N4, N3S and N2S2 cores having three meso-furyl groups and one meso-iodophenyl group were synthesized and characterized. The porphyrin building blocks were used to synthesize six porphyrin dyads such as N4-N4, N3S-N3S, N2S2-N2S2, N4-N3S, N4-N2S2 and N3S-N2S2 containing meso-tolyl and meso-furyl porphyrin sub-units under mild Pd(0) mediated coupling conditions. Steady state fluorescence studies indicated an efficient energy transfer from the meso-tolyl porphyrin sub-unit to the meso-furyl porphyrin sub-unit in all six dyads. This study supported the argument that the meso-furyl porphyrins can be used as good energy acceptors when meso-aryl porphyrins act as energy donors in their metal free form.  相似文献   

4.
The specific heat, entropy, enthalpy, and Gibbs free energy of cyclopropene-d0, cyclopropene-1-d1, cyclopropene-3-d1, cyclopropene-1,2-d2, cyclopropene-3,3-d2, cyclopropene-1,3,3-d3, and cyclopropene-d4 have been calculated for the temperature range 100–1500 K using the rigid-rotor and harmonic oscillator model. The standard enthalpy and Gibbs free energy of formation of cyclopropene-d0 have also been evaluated for the same temperature range using the experimental standard enthalpy of formation at 298.15 K.  相似文献   

5.
Hydrides FH3, ClH3, and OH?3 of type MH3E2 are calculated to adopt D3h structures: NH32?, PH32?, and SH3? each have two energy minima, one at D3h and the other at a T-shaped geometry, of which the D3his the more stable for SH3? but the less stable for NH32? and PH32?. Hydrides NH42?, OH4, and ClH4+ of type MH4E have a single energy minimum at Td: CH42?, SiH42?, PH4?, and SH4 each have two minima, one at Td (more stable for SH4 only) and one at an SF4-like C2v geometry, which is the more stable for CH42?, SiH42? and PH4?. D3h and C4V structures are very close in energy for all hydrides of type MH5E, with no activation barrier between the two configurations: D3h is the more stable configuration for OH5?, FH5, SH5, and ClH5, but C4V is the more stable for NH52?, SiH53?, and PH5?. The T1u bending force constant in hydrides MH6E becomes negative, for C3V distortion, in PH63? and SiH64?. Both the equilibrium geometries and the force constants strongly support an interpretation, in terms of the second-order Jahn-Teller effect, of the observed stereochemical inactivity of non-bonding electrons in the presence of ligands of low electronegativity. Molecular energies, equilibrium geometries, orbital energies and electron populations are reported for all species considered in this study. Three molecular states of ClH4?, of type MH4E2, were also briefly investigated.  相似文献   

6.
7.
The ground-state potential energy function of PO+ has been calculated from the set of molecular constants B e, ωe, a i (i = 1, … , 5), R e, D e and C4 in the form of generalized potential energy function previously suggested by us for solving the inverse spectroscopic problem.  相似文献   

8.
Ab initio calculations at the 4-31G level are carried out on the species SiHn (n = 0 to 4) and the corresponding ions. SiH+4 is found to distort from Td to D2d. C2v, and C3v, with the latter structure being the lowest in energy by 11 kcal/mole. Consistent with experimental mass spectroscopy, SiH+4 is found to be much less stable to dissociation than CH+4.  相似文献   

9.
The 52 × 52 energy matrix related to the ground multiplet 4I9/2 and the first to third excited multiplets 4I11/2, 4I13/2 and 4I15/2 for 4f3 ions in trigonal crystal field under an external magnetic field is established. By diagonalizing the energy matrix, the spin-Hamiltonian parameters (g factor g//, g and hyperfine structure constants 143A//, 143A, 145A//, 145A) of the trigonal Nd3+ center in congruent LiNbO3 crystal are calculated. The calculated results are in reasonable agreement with the experimental values. From the calculations, the negative signs of hyperfine structure constants are suggested and the angular distortion of the trigonal Nd3+ center in LiNbO3, which is unable to be determined by EXAFS measurement, is obtained. The results are discussed.  相似文献   

10.
The overall activation energy of the thermal degradation of polyisobutylene has been measured using factor-jump thermogravimetry to be 206±1 kJ/mole over the range 365 to 405° in N2 at 800 mm Hg pressure and flowing at 4 mm/s over the sample. This is consistent with some values reported for thermal degradation in vacuum and in solution. In 5 mm Hg of N2, an apparent activation energy of 218±2 kJ/mole was found, and in vacuum the apparent activation energy is 238±13 kJ/mole. Troublesome bubbling made the vacuum values difficult to measure. Substitution of reasonable values for the activation energies of initiation,E i , termination,E t , and the activation energy,E a , for vacuum degradation in the equationE a =E i /2E d -E t /2 yields an activation energy Ed=84 kJ/mole for the unzipping reaction. This equation presupposes a degradation mechanism of random initiation, unzipping, and bimolecular termination. Substitution of reasonable values for the heat of polymerization, ΔH, in the definition ΔH=E p ?e d suggests that the activation energy of the polymerization reaction at 375° is approximately 30 kJ/mole.  相似文献   

11.
The activation free energy for electron transfer in solution or at electrodes is correlated to the corresponding Franck—Condon determined reorganization free energy Rm for photoelectron emission. Excellent to fair agreement is obtained between the activation free energies predicted from Rm and experimental values. Data are given for V2+, Cr2+, Mn2+, Fe2+, Co2+, and Fe(CN)4?6 in aqueous solution.  相似文献   

12.
In a novel plasma-shade reactor for oxidative reforming of biogas (CH4/CO2 = 3/2), the effects of specific-energy-input (SEI) on CH4 and CO2 conversions and energy cost of syngas were investigated at O2/CH4 ratios ranged from 0.42 to 0.67. At each of O2/CH4 ratios, V-shape profiles of energy cost of syngas increasing with SEI were observed, reaching the lowest value at the optimal SEI (Opt-SEI). With the increase of O2/CH4 ratio, the Opt-SEI decreased significantly. Moreover, at the Opt-SEI, O2 and CH4 conversions and dry-basis concentration of syngas increased and energy cost of syngas decreased greatly with the increase of O2/CH4 ratio.  相似文献   

13.
《Fluid Phase Equilibria》1999,155(1):127-137
Solubilities of 15 nonpolar gases (He, Ne, Ar, Kr, Xe, H2, D2, N2, O2, CH4, C2H4, C2H6, CF4, SF6, and CO2) in 2-methyl-2-propanol (tert-butanol) have been measured at the temperature 303.15 K and 101.33 kPa partial pressure of gas. Standard changes of the Gibbs energy of solution have been also determined from experimental data. The Lennard–Jones 6,12 pair potential parameters have been estimated for that solvent using the Scaled Particle Theory (SPT) and these parameters have been compared with those corresponding to the other isomers of butanol. It can be concluded that the derived energy parameters provide a measurement of the association of the alkanol. A version of the UNIFAC model has been applied and the corresponding interaction parameters for alkanes and alkanols have been determined.  相似文献   

14.
Porous S-doped bismuth vanadate with an olive-like morphology and its supported cobalt oxide (y wt% CoOx/BiVO4−δS0.08, y = 0.1, 0.8, and 1.6) photocatalysts were fabricated using the dodecylamine-assisted alcohol-hydrothermal and incipient wetness impregnation methods, respectively. It is shown that the y wt% CoOx/BiVO4−δS0.08 photocatalysts were single-phase with a monoclinic scheetlite structure, a porous olive-like morphology, a surface area of 8.8–9.2 m2/g, and a bandgap energy of 2.38–2.41 eV. There was the co-presence of surface Bi5+, Bi3+, V5+, V3+, Co3+, and Co2+ species in y wt% CoOx/BiVO4−δS0.08. The 0.8 wt% CoOx/BiVO4−δS0.08 sample performed the best for methylene blue degradation under visible-light illumination. The photocatalytic mechanism was also discussed. We believe that the sulfur and CoOx co-doping, higher oxygen adspecies concentration, and lower bandgap energy were responsible for the excellent visible-light-driven catalytic activity of 0.8 wt% CoOx/BiVO4−δS0.08.  相似文献   

15.
The electronic structures of MnO?4, MnO2?4, MnO3?4, CrO2?4, CrO3?4, VO3?4, RuO4, RuO?4, RuO2?4, TcO?4 and MoO2?4 have been investigated using the Hartree-Fock-Slater Discrete Variational Method. The calculated ordering of the valence orbitals of all the comlexes is: t1, 4t2, 3a1, 1c, 3t2, with t1 the orbital of highest energy. The calculated single transition energies are in good agreement with experimental values and indicate the uniform assignment: t1 → 2e(v1), 4t2 → 2e(v2). t1 → 5t2(v3), and 4t2 → 5t2(v4). A/D values, calculated from the theory of magnetic circular dichroism (MDC) also support this assignment.Population analyses reveal that all complexes, whether d0, d1 or d2, have d-orbital populations close to those of the corresponding M2+ ions in which two electrons have been removed from the (n + 1)s orbital of M. This is also true of the excited states, such as t1 → 2e and 4t2 → 2e, where a transfer of charge from the ligands to the metal has previously been assumed. It is shown that, instead of a transfer of charge from ligands to metal, electronic excitation consists of a rearrangement of electron density both at the ligands and at the metal.  相似文献   

16.
The non-empirical generalized Kirkwood, Unsöld, and the single-Δ Unsöld methods (with double-zeta quality SCF wave-functions) are used to calculate isotropic dispersion (and induction) energy coefficients C2n, with n ? 5, for interactions involving ground state CH4, C2H6, C3H8, n-C4H10 and cyclo-C3H6. Results are also given for the related multipole polarizabilities αl, multipole sums S1/(0) and S1(?1) which are evaluated using sum rules, and the permanent multipole moments. for l = 1 (dipole) to l = 3 (octupole). Estimates of the reliability of the non-empirical methods, for the type of molecules considered, are obtained by a comparison with accurate literature values of α1S1(?1) and C6. This, and the asymptotic properties of the multipolar expansion of the dispersion energy, the use to discuss recommended representation for the isotropic long range interaction energies through R?10 where R is the intermolecular separation.  相似文献   

17.
The electronic structure of the tetrahedral molecule VCL4 is investigated within the CNDO-MO approximations. The metal and ligand valence orbitals, 3d, 4s, 4p; and 3s, 3p; respectively, have been systematically varied in an attempt to minimize the total energy; “optimum” V 4s(χ4 = 1.10) and 4p(d 3 p 2) orbitals have been established, but V 3d(d n ) and Cl(-δ) valence orbitals are only seen to favor lower energy for expanded orbitals. Since determining the one-electron molecular orbital level which is occupied by the vanadium lone electron is a major aspect of this investigation, all calculations have been performed in triplicate: calculations assuming the unpaired electron occupies the 3a 1, 2 e and 4t 2 molecular orbital (ground state electronic configurations2 A 1,2 E, and2 T 2, respectively). The Hartree-Fock equations have been solved by Roothaan's SCF method for open shells, but off-diagonal multipliers between filled and partly filled molecular orbitals of the same symmetry have been neglected. As a qualitative estimate of the error introduced by this simplification, the pertinent overlap integrals between the eigenfunctions from calculations for the three possible configurations,2 A 1,2 E, and2 T 2, are investigated as functions of the component 3d(d n ) and Cl(-δ) valence orbitals. The overlap integrals from the relevant2 A 1 and2 T 2 calculations are reasonably small, but the neglect of off-diagonal multipliers in calculations on the2 E state is found to be a poor approximation. An ordering of the non-filled molecular orbitals in VCl4 of 4t 2 < 3a 1 < 2e < 5t 2 seems most consistent with the numerous calculations. This suggested ground state electronic configuration of2 T 2 introduces new aspects to the consideration of a (dynamic) Jahn-Teller effect in VCl4. Experimental data pertinent to the electronic structure of VCl4 has been briefly summarized, but unfortunately it is inadequate to confirm or deny the present calculations.  相似文献   

18.
In separation processes with charged membranes, as in electrodialysis units or electrochemical cells, the efficiency of conversion of electrical energy into the concentration gradient of an electrolyte is depressed by the immediate flow of water in the direction opposite to the solute flow. The equations for energy conversion in transport of ions and water across a cation-exchange membrane are derived in the present paper treating the system as a three-flow process and employing phenomenological transport equations. With these equations, the two-flow (q1E, qwE, q1w and overall (E) degrees of coupling and the total (η) and component (η1EwE) efficiencies of energy conversion have been computed for the system sodium chloride/Nafion 120 membrane at temperatures of 298 and 333 K and for solute concentrations between 0.05 and 4 M. Considering the continuous separation processes, the so-called “driving region” and the energy requirement to keep the concentration difference in the adjacent compartments constant (static head) have been calculated and discussed.  相似文献   

19.
Four new Schiff base functionalized 1,2,3-triazolylidene nickel complexes, [Ni-(L1NHC)2](PF6)2; 3, [Ni-(L2NHC)2](PF6)2; 4, [Ni-(L3NHC)](PF6)2; 7 and [Ni-(L4NHC)](PF6)2; 8, (where L1NHC = (E)-3-methyl-1-propyl-4-(2-(((2-(pyridin-2-yl)ethyl)imino)methyl)phenyl)-1H-1,2,3-triazol-3-ium hexafluorophosphate(V), 1, L2NHC = (E)-3-methyl-4-(2-((phenethylimino)methyl)phenyl)-1-propyl-1H-1,2,3-triazol-3-ium hexafluorophosphate(V), 2, L3NHC = 4,4′-(((1E)-(ethane-1,2-diylbis(azanylylidene))bis(methanylylidene))bis(2,1-phenylene))bis(3-methyl-1-propyl-1H-1,2,3-triazol-3-ium) hexafluorophosphate(V), 5, and L4NHC = 4,4′-(((1E)-(butane-1,4-diylbis(azanylylidene))bis(methanylylidene))bis(2,1-phenylene))bis(3-methyl-1-propyl-1H-1,2,3-triazol-3-ium) hexafluorophosphate(V), 6), were synthesised and characterised by a variety of spectroscopic methods. Square planar geometry was proposed for all the nickel complexes. The catalytic potential of the complexes was explored in the oxidation of styrene to benzaldehyde, using hydrogen peroxide as a green oxidant in the presence of acetonitrile at 80 °C. All complexes showed good catalytic activity with high selectivity to benzaldehyde. Complex 3 gave a conversion of 88% and a selectivity of 70% to benzaldehyde in 6 h. However, complexes 4 and 7–8 gave lower conversions of 48–74% but with higher (up to 90%) selectivity to benzaldehyde. Results from kinetics studies determined the activation energy for the catalytic oxidation reaction as 65 ± 3 kJ/mol, first order in catalyst and fractional order in the oxidant. Results from UV-visible and CV studies of the catalytic activity of the Ni-triazolylidene complexes on styrene oxidation did not indicate any clear possibility of generation of a Ni(II) to Ni(III) catalytic cycle.  相似文献   

20.
Molecular structures of the SiZrH4 complex were investigated at BPW91, BPW91/IEF-PCM, B3LYP, and MP2 levels of theory with substantial basis sets. Relative stability of the stable conformers is fairly dependent on the methods, solvent effects, and zero-point energy corrections. All the four levels of calculations indicated that the singlet HSi(μ-H)ZrH2, trans-Si(μ-H)2ZrH2, cis-Si(μ-H)2ZrH2, and the triplet Si(μ-H)3ZrH are stable and comparable in energy. The energy of these four isomers is well below that of the Zr(3F2) + SiH4 system. The trans-dibridged, rather than the tribridged, isomer was always predicted to be the most stable one by all the four levels of calculations. For the two dibridged isomers, the two SiH2 stretching modes are highly coupled with the two ZrH2 stretching modes. And such coupling cannot be removed by the full deuteration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号