首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
黄宪  马云 《中国化学》1998,16(6):483-498
This paper describes the progress on the synthesis of organic selenides and tellurides and their application in organic synthesis.Low valent selenium and telluronium compounds having high reducing selectivity can be used to form carbon-hydrogen bonds as special reducing reagents.Telluronium ylides can react with aldehydes and ketones by Wittig-type condensation to produce (E)-configuration alkenes stereoselectively.α-Phenylselanyl arsonium ylides were prepared by transyl-idation reaction of arsonium ylides with phenylselanyl halides which can undergo Wittig-type reactions with carbonyl compounds to give (Z)-α-selanyl-α,β-unsaturated compounds with high stereoselectiv-ity.Zirconium,tin,boron,halogen,metal or hetero-atom were introduced in organoselenium and telluronium compounds as new difunctional group reagents.Under transition metal catalysis,the corresponding cross coupling reactions provide new methods of formation of carbon-carbon double bonds,which were used in the stereoselective synthesis of  相似文献   

2.
Novel aerogels and xerogels with methylsilsesquioxane (MSQ, CH3SiO1.5) networks have been prepared by a modified sol–gel process using surfactant and urea as a phase-separation inhibitor and as an accelerator for the condensation reaction, respectively. Optimized aerogels dried under a supercritical condition not only showed the similar properties as conventional pure silica aerogels such as high transparency and porosity etc, but also demonstrated outstanding mechanical strength against compression; the aerogel drastically shrank upon loading and then recovered when unloaded, which is called a “spring-back” behavior. On ambient pressure drying, the wet gel also exhibited the similar response against compression stress originated from the capillary pressure, and thus xerogels with the comparative structure and properties to those of corresponding aerogels have also been obtained. This unusual mechanical behavior is attributed to the trifunctional flexible networks of MSQ, low silanol concentration which prevents the irreversible shrinkage, and high concentration of a hydrophobic methyl group directly attached to every silicon atom which helps re-expansion after the temporal shrinkage.  相似文献   

3.
Metal-organic frameworks (MOFs), as a novel categories of porous and well crystalline materials, were gained significant interest in the current years. These materials offer practical implementations in different sectors, like hydrogen and carbon dioxide storage, catalysis and separation due to their superior porosity, great surface area and versatile framework. The current review outlines the existing state of the art in using MOFs as catalysts in various organic transformation processes and photocatalysis depending on the site form, with particular confirmation on the most recent techniques for increasing the active centers and modifying their performance, by deposition of metallic nanoparticles on its surface or within the pores. In addition, the substantial progress made in the production of various composites containing MOF with particular focus on preparation and catalytic applications was provided.  相似文献   

4.
In this study, metal organic framework (MOF)–organic polymer monoliths prepared via a 5-min microwave-assisted polymerization of ethylene dimethacrylate (EDMA), butyl methacrylate (BMA), and 2-acrylamido-2-methylpropane sulfonic acid (AMPS) with the addition of various weight percentages (30–60%) of porous MOF (MIL-101(Cr)) were developed as stationary phases for capillary electrochromatography (CEC) and nano-liquid chromatography (nano-LC). Powder X-ray diffraction (PXRD) patterns and nitrogen adsorption/desorption isotherms of these MOF–organic polymer monoliths showed the presence of the inherent characteristic peaks and the nano-sized pores of MIL-101(Cr), which confirmed an unaltered crystalline MIL-101(Cr) skeleton after synthesis; while energy dispersive spectrometer (EDS) and micro-FT-IR spectra suggested homogenous distribution of MIL-101(Cr) in the MIL-101(Cr)–poly(BMA–EDMA) monoliths. This hybrid MOF–polymer column demonstrated high permeability, with almost 800-fold increase compared to MOF packed column, and efficient separation of various analytes (xylene, chlorotoluene, cymene, aromatic acids, polycyclic aromatic hydrocarbons and trypsin digested BSA peptides) either in CEC or nano-LC. This work demonstrated high potentials for MOF–organic polymer monolith as stationary phase in miniaturized chromatography for the first time.  相似文献   

5.
Two new ionic-pair salts containing an organic dye cation, i.e. New Fuchsin or Pararosaniline cation, with Keggin-type POMs, [SiW12O40]4? and [BW12O40]6?, have been isolated under hydrothermal conditions. [(C22H24N3)4][SiW12O40] (1) and [(C19H18N3)6][BW12O40] (2) have been characterized by elemental analyses, FT-IR and single crystal X-ray crystallography. Both of these complexes have strong absorption in the visible-light range due to the involvement of the organic dye and both show weak fluorescence emission.  相似文献   

6.
A mixture of triethoxysilanefunctionalized poly(ethylene glycol), f-PEG, and tetraethoxysilane, TEOS, was used as precursors in the preparation of continuous hybrid f-PEG-siloxane sol–gel derived fibers. The fibers were spun by extrusion through a spinneret. The thus prepared fibers had a diameter of 20–50 m. 29Si-CPMAS NMR measurements confirmed that the functionalized PEG is incorporated into the siloxane network through covalent bonds. The hybrid fiber elasticity was much higher than that of fibers spun from sols with TEOS as the only source for silica. However, the f-PEG chain length plays a crucial role for the spinnability of the sol, since, as a result of bridging flocculation, macroscopic phase separation occurred readily with increasing chain length of the f-PEG. The fibers were shown to be effective substrates for the nucleation and growth of bone-like hydroxyapatite.  相似文献   

7.
A donor–bridge–donor compound for blue light-emitting with triphenylamine as donor and pentiptycene derivative units as bridge was synthesized via Sonogashira reaction. The chemical structure was confirmed by NMR and MALDI-TOF MS. It emits blue light peaked at 442 nm with a FWHM of 59 nm in CH2Cl2. Fluorescent quantum efficiency in THF is 82% relative to 9,10- diphenylanthracene. A slight hypsochromic shift was found in its drop-cast film. Cyclic voltammetry revealed that it has high HOMO level corresponding to hole transporting character.  相似文献   

8.
The capability to functionalize the interior channels and/or high internal surface areas of mesostructured inorganic–organic or porous inorganic solids with specific organic or inorganic moieties has dramatically expanded the potential applications for these versatile materials in catalysis, separations, optical and opto-electronic devices, drug delivery, sensors, and energy conversion. Key to the widespread application of these materials are the various synthetic schemes that have been developed to provide control over the types of species incorporated and, more importantly, their distributions within the mesostructured hosts. Furthermore, multiple active species can often be independently incorporated and collectively optimized to yield multifunctional properties that widen application prospects. Several recent developments and examples in this rapidly growing field of materials chemistry and engineering are highlighted and discussed.  相似文献   

9.
A starburst triphenylamine cored N-vinyl carbazole (V-Cz) branched compound was designed and synthesized via optimized Heck reaction in a yield of 40-60%.Moderate yield came from decomposition of V-Cz and self-coupling of triiodo-triphenylamine. TCz-TPA adopts a highly twisted propeller conformation by molecular mechanical optimization.It is readily soluble for its highly twisted conformation.Transparent and pinhole free films could be easily fabricated by spin-coating for its starburst structure.It emits blue-greenish light in CH_2Cl_2 peaked at 460 nm with a narrow full-width at half-maximum (FWHM) of 65 nm.As compared, the absorption peaks of the spin-coated film blue shifted and emission peak red shifted to 510 nm with a FWHM of 96 nm.  相似文献   

10.
The hydroxyl or vinyl end-groups of linear or three-arm star-shaped poly(ε-caprolactone) (PCL) chains have been derivatized into triethoxysilane groups reactive in the sol-gel process. New transparent hybrid materials that combine tetraethylorthosilicate (TEOS) and PCL known for biodegradability and biocompatibility have accordingly been prepared. The sol-gel process is, however, limited by the early vitrification of the reactive system. However, thermal posttreatment can overcome these diffusional and/or kinetic limitations as assessed by a set of analytical methods. The thermal stability of PCL is improved by incorporation into the silica network. Conversely, the thermal stability of the ceramer depends on the effective PCL content. The extent of PCL incorporation into the silica network depends on PCL molecular weight, number, and reactivity of the PCL functional groups. IR spectroscopy has shown that hydrogen bonding occurs between the ester groups of PCL and residual OH groups of the silicate component. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2295–2309, 1997  相似文献   

11.
New efficient push–pull organic semiconductors comprising of the bis(9,9-dimethyl-9H-fluoren-2-yl)aniline (bisDMFA) donor and the various acceptors such as NO2, DCBP, and TCF, which were linked with bithiophene or vinyl bithiophene π-conjugation bridges, were synthesized, and their photovoltaic characteristics were investigated in solution-processed small molecule organic solar cells (SMOSCs). The intramolecular charge transfers of these materials were effectively appeared in between bisDMFA donor and acceptors, depending on the electron-withdrawing strength of acceptors. The organic semiconductors having NO2 and DCBP acceptors exhibited the most efficient photovoltaic performance, showing power conversion efficiency (PCE) of 1.98% (±0.17) and 2.01% (±0.21), respectively. When the TiOx thin layer was treated on photoactive layer, the organic semiconductor having NO2 showed the best PCE of 2.70% with short circuit current of 8.19 mA/cm2, fill factor of 0.40, and open circuit voltage of 0.83 V in SMOSC devices.  相似文献   

12.
Three small-molecule donors based on dithieno [2,3-d:2’,3 ’-d’]-benzo[1,2-b:4,5-b’] dithiophene(DTBDT)unit were designed and synthesized by side chain regulation with chlorinated or/and sulfurated substitutions(namely ZR1,ZR1-Cl,and ZR1-S-Cl respectively),along with a crystalline non-fullerene acceptor IDIC-4 Cl with a chlorinated 1,1-dicyanomethylene-3-indanone(IC) end group.Energy levels,molar extinction coefficients and crystallinities of three donor molecules can be effectively altered by combining chlorination and sulfuration strategies.Especially,the ZR1-S-Cl exhibited the best absorption ability,lowest higher occupied molecular orbital(HOMO) energy level and highest crystallinity among three donors,resulting in the corresponding all-small-molecule organic solar cells to produce a high power conversion efficiency(PCE) of 12.05% with IDIC-4 Cl as an acceptor.  相似文献   

13.
Scientists have developed techniques for synthesizing and characterizing many new materials including conjugated small molecules, polymers and gold particles protected by conjugated organic chromophores for testing specific sensing properties in the past decade. Still, the design and synthesis or supermolecular systems fabrication of novel materials with controlled sensing properties is a significant and ongoing challenge within nanoscience and nanotechnology. Recently, our group has successfully constructed a series of chemosensors using small organic molecules, conjugated polymers and gold nanoparticles for real-time detection of specific analytes. The chemosensors show high selectivity and sensitivity in the detection of cations and biologic analytes and thus are potentially promising for applications in sensing assay system. In this review, recent sutdies on the design, synthesis and photo-physical properties of novel materials and construct of chemosensors are summarized with an emphasis on the development in our groups in recent years. Supported by the National Natural Science Foundation of China (Grant Nos. 20531060, 20721061 & 20873155), and the National Basic Research 973 Programme of China (Grant No. 2007CB936401)  相似文献   

14.
Fluorinated organic–inorganic hybrid films were prepared by sol–gel process from tridecafluoroctyltriethoxysilane (PFAS), 3-glycidoxypropyltrimethoxysilane, and tetraethoxysilane (TEOS). It has been found that the fluorinated hybrid films possessed fluorinated side chains originating from PFAS as top layer, and silica network as bottom layer, which had very low surface energy and could be used as water repellent functional coatings. The outermost layer of the water-repellent film may be fully covered by the perfluoroalkyl side chains as the molar ratio of PFAS/TEOS increases up to about 0.005:1. The addition of BPA can enhance the cross-link density of fluorinated hybrid films, and make more perfluoroalkyl groups enriching at the coating film-air interface to lower the surface free energy. However, the improvement of the cross-link density of fluorinated hybrid films tends to exhibit brittleness and micro-cracks. Consequently, it can be concluded that a small BPA additive content is preferred for the formation of fluorinated hybrid films with a smooth surface and less detectable cracks.  相似文献   

15.
A new series of copolymers of phenol and aniline poly(PHE-co-ANI) was synthesized at platinum electrode through electro-oxidative polymerization in acetonitrile in the presence of lithium perchlorate as supporting electrolyte. Electro-polymerization was studied by cyclic voltammetry. The resultant copolymers were characterized by UV–Vis, IR, 13C and 1H NMR spectroscopy; surface morphology of the copolymers was investigated by scanning electron microscopy.  相似文献   

16.
Organic–inorganic hybrid liquid crystal (LC) gels have been synthesised by the thiol-ene reaction of a multifunctional cyclic siloxane, 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane (TVMCTS) and alkane dithiols, 1,6-hexanedithiol (HDT) or 1,9-decanedithiol (DDT), in LC matrices, 4-cyano-4?-pentylbiphenyl (5CB) or 4′-n-octyl-4-cyano-biphenyl (8CB). The LC gels were prepared in an isotropic phase at 70°C or mesophases at 25°C using radical initiators. The phase transition temperatures from a mesophase to an isotropic phase of the resulting gels were lower than those of the original LCs. The gels containing 8CB (8CB gels) prepared at 25°C showed two phase transitions: smectic-to-nematic and nematic-to-isotropic transitions. By contrast, the 8CB gels synthesised in the isotropic phase showed only one phase transition from smectic phase directly to isotropic phase. Reaction conversions in the LC gels prepared at 70°C were higher than that in the gels prepared at 25°C. Scanning microscopic light scattering analysis of the LC gels cleared homogeneous small size mesh with a small amount of large defect. Polarisation micrographs of the LC gels showed framed optical textures derived from the LC molecules at room temperature. The LC gels containing more than 90 wt% of LC showed electro-optic response.  相似文献   

17.
The methods of preparation, structure, and some chemical conversions of imines and enamines based on -piperidones were examined.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 1, pp. 3–17, January, 1994.  相似文献   

18.
A series of mesoporous nanosphere materials that are functionalized with various terminal and bridging organic groups were synthesized. They have improved adsorption capacity and different release properties for drug and small molecules. The materials contained terminal vinyl, 3-mercaptopropyl, 3-aminopropyl, and secondary amine functional groups and bridging ethane, ethene, and benzene groups within their mesopore channel walls. The samples containing mercaptopropyl and vinyl groups showed greater adsorption capacity and better controlled release behavior for rhodamine 6G molecules. On the other hand, mesoporous matrices containing amine functional groups showed higher adsorption capacity and better release properties for ibuprofen molecules. Further studies revealed that the bridging organic groups in the mesopore channel walls also improved the adsorption capacity and release properties of the materials compared to the corresponding samples containing no bridging organic groups. Such improved adsorption and controlled release properties of molecules by simple changes of functional groups on mesoporous materials are important for the development of nanomaterial drug delivery vehicles and for controlled release of drugs over long time periods at specific targeted sites in the body. By judicious choice of organic groups and by systematic design and synthetic approaches, nanoporous materials having different adsorption capacity and release properties for many other drug molecules can also be achieved.  相似文献   

19.
Hydrothermal reactions of uranyl nitrate and 4,4'-oxidiphthalic acid(H_4L) resulted in the formation of three new uranyl-organic framework materials,namely(NH_4)_2[(UO_2)_3(L)_2]·5H_2O(1),(NEt_4)[(UO_2)_3(H_2O)(L)(HL)](2) and(UO_2)_7(H_2O)_2(phen)_4(L)_2(HL)_2(3)(NEt_4 = tetraethylammonium,phen = 1,10-phenanthroline).These three structures all comprise common uranyl pentagonal bipyramids.In 1,UO_7polyhedra are linked by hexadentate ligands to form a 3D framework with 1D channels,in which are located NH_4~+ ions and water molecules.While in 2,the organic ligands adopt pentadentate and hexadentate coordination modes,ligating UO_7 units to create a layered structure with channels filled by NEt_4~+ ions.For 3,uranyl square bipyramids are also accommodated together with pentagonal bipyramids,which are linked by tetradentate carboxylate ligands to produce the layered assembly.Phen molecules also coordinate to the uranyl centers to build up the structure.Luminescent studies indicate that 2 and 3 exhibit the characteristic uranyl emission.  相似文献   

20.
The solid–liquid phase equilibrium data of two binary organic systems, namely, urea (U)–3-aminophenol (AP) and 3-hydroxybenzaldehyde (HB)–β-napthaol (BN) show formation of a eutectic in each case. The enthalpies of fusion of the pure components and binary eutectics have been determined using differential scanning calorimeter (Mettler DSC-4000) system. The thermal properties of the materials such as heat of mixing, entropy of fusion, roughness parameter, interfacial energy and excess thermodynamic functions were computed using the enthalpy of fusion values. The microstructures of eutectics were developed using unidirectional thermal gradient and interested region were photographed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号