首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Multi-reference configuration interaction, MR-CI (including extensivity corrections, named +Q), calculations were performed on the S0–S3 states of cyclohexa-2,4-diene-1-thione (thione 24 ) and cyclohexa-2,5-diene-1-thione (thione 25 ), which are thione isomers of thiophenol. Several types of uncontracted MR-CIS and MR-CISD wavefunctions were employed, comprising MR-CI expansions as large as ~365 × 106 configuration state functions. The nature of the studied excited states was characterized. Vertical excitation energies (ΔE) and oscillator strengths (f) were computed. The most intense transitions (S0 → S2 for 24 and S0 → S3 for 25 ) did not change with the wavefunction, although a variation as large as ~1 eV was obtained for the S3 state of 24 , at the highest (MR-CI+Q) level. On the other hand, ΔE changed at most by ~0.56 eV for 25 as the wavefunction changes, at the same level. The S1 state of both thiones was found to have nπ* character and is in the visible region. For 24 , S2 and S3 are ππ* and nπ* states, respectively, while for 25 the reverse order is obtained. S2 and S3 are in the range ~3.5 to 5.2 eV, again at the highest level. It is the first time that the excited states of the title molecules are studied. The computed results agree with the experimental onset of photoreactions of thiones 24 and 25 found by Reva et al (Phys. Chem. Chem. Phys., 2015 , 17, 4888).  相似文献   

2.
We present the S1 → S0 fluorescence spectrum, between 740 and 940 nm, of azulene solutions (10?3 M in methanol) excited with a Q-switched ruby laser. The nitrogen-laser excited S2 → S1 fluorescence spectrum, between 700 and 930 nm, is also reported. The transient S1 → Sn spectrum between 500 and 650 nm was studied, using synchronous nitrogen laser and dye laser excitation. The S5 (1B1(3)) state of azulene was found to be located at 45500 cm?1 and the cross section σ25 of the transient absorption S2 → S5 is estimated to be 3 × 10?18 cm2/molecule.  相似文献   

3.
In this paper we present the results of an experimental study of intermolecular electronic energy transfer (EET) from the short-lived Second excited singlet state of rhodamine 6G (R6G) to the ground state of 2,5-bis [5′-tert-butyl-2-benzoxazolyl] thiophene (BBOT). The S2 state of the donor was excited by sequential, time-delayed, two-photon excitation (STDTPE) utilizing the second harmonic and the first harmonic of a mode-locked Nd3+: glass laser, while the EET process was interrogated by monitoring the enhancement of the S1 → S0 fluorescence of BBOT. The enhancement of the fluorescence intensity of BBOT was found to be linear in the energies of the two exciting pulses, and linear in the concentration of the energy acceptor (over the BBOT concentration range of (0.3–7) × 10?5 M), which is in accord with the predictions of the Forster—Dexter mechanism for resonant EET from an ultrashort-lived donor state at low acceptor concentrations. Quantitative measurements of the S2 → S0 fluorescence yield in R6G solution directly excited by STDTPE and of the S1 → S0 fluorescence of BBOT from R6G + BBOT solutions resulting from EET led to the values of YD(S2 → S0) = (2.1 ± 0.5) × 10?6 for the emission quantum yield of the S2 state of R6G and τrD(S2) ≈ 3 × 10?14 s for the lifetime of the metastable S2 state of this molecule.  相似文献   

4.
Ab initio extensive configuration interaction calculations were carried out on the π-electron states of benzene. Among the three π → π*(e1g → e2u) singlet states, 1B2u(S1). 1B1u(S2), and 1E1u(S3), the π* orbital was found to be velence-like in S1 and S2, but diffuse in S3. All three corresponding triplet states, 3B1u(T1) and 3B2u(T3), were found to be valence-like. The valence-like 1E2g(S4) and 3E2g(T4) states were found to have significant double-excitation character, and were estimated to lie somewhat above S3 and T3, respectively. No low-lying S5 and T5 states were found. Several low-lying Rydberg states were identified.  相似文献   

5.
The ground, singlet, and triplet excited state structures (S1, S2, T1, and T2) of xanthone have been calculated and characterized in the adiabatic representation by using time-dependent density functional theory (TDDFT). However, the fast intramolecular transition mechanisms of xanthone are still under debate, and so we perform non-adiabatic excited state dynamics of the photochemistry of xanthone gas phase and find that it follows El-Sayed's rule. Electronic transition mechanism of xanthone is sequential from the S2 state: the singlet internal conversion (IC) time from S2 (1ππ*) to S1 (1*) is 3.85 ps, the intersystem crossing (ISC) from S1 (1*) to T2 (3ππ*) takes 4.76 ps, and the triplet internal conversion from T2 (3ππ*) to T1 (3*) takes 472 fs. The displaced oscillator, Franck–Condon approximation, and one-photon excitation equations were used to simulate the absorption spectra of S0 → S2 transition, with v55 being most crucial for S0 structure; the fluorescence spectra of S1 → S0 transition with v47 for S1; and the phosphorescence spectra of T1 → S0 transition with v4 for T1. Our method can reproduce the experimental absorption, fluorescence, and phosphorescence spectra of gas-phase xanthone.  相似文献   

6.
We report a spectroscopic study of consecutive two-photon absorption of azulene excited in the range 32800–42000 cm?1, which provides information concerning the cross sections for the S1 → S3 and the S1 → S4 transitions.  相似文献   

7.
Complete active space self‐consistent field (CASSCF) and multiconfiguration second‐order perturbation theory (CASPT2) calculations with contracted ANO‐RCC basis set were performed for low‐lying electronic states of CH3SS and its cation in Cs symmetry. For the ground state X2A″ of CH3SS, the calculated S‐S stretching mode is in good agreement with experimental reports. The electron transitions of CH3SS+, X1A′ → 11A″, X1A′ → 21A′, and X1A′ → 21A″, are predicted at 1.055, 3.247, and 3.841 eV. Moreover, the calculated adiabatic and vertical ionization potential and adiabatic affinity are in reasonable agreement with the experimental data. The CASSCF/CASPT2 potential energy curves (PECs) were calculated for S2‐loss dissociation from the X2A″, 12A′, and 22A″ states. The electronic states of the CH3 radical and S2 molecule as the dissociation products were carefully determined by checking energies and geometries of the asymptote products. The S2‐loss PEC for CH3SS indicate that S2‐loss dissociation occurs from the X2A″ state leading to CH3 (12A″) + S2 (X3Σ), the 12A′ and 22A″ leading to CH3 (12A″) + S2 (1Δg). © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012.  相似文献   

8.
The rate coefficients of the reactions of CN and NCO radicals with O2 and NO2 at 296 K: (1) CN + O2 → products; (2) CN + NO2 → products; (3) NCO + O2 → products and (4) NCO + NO2 → products have been measured with the laser photolysis-laser induced fluorescence technique. We obtained k1 = (2.1 ± 0.3) × 10?11 and k2 = (7.2 ± 1.0) × 10?11 cm3 molecule?t s?1 which agree well with published results. As no reaction was observed between NCO and O2 at 297 K, an upper limit of k3 < 4 × 10?17 cm3 molecule?1 S?1 was estimated. The reaction of NCO with NO2 has not been investigated previously. We measured k4 = (2.2 ± 0.3) × 10?11 cm3 molecule?1 s?1 at 296 K.  相似文献   

9.
We report an Ar/Kr ion laser induced spectrally resolved S1 → S0 emission from an azulene in a host naphthalene crystal observed at the helium λ-point and at 77 K. Less well resolved S1 → S0 emission from crystalline azulene dispersed in a KBr pellet at 300 K is also reported. For the 6471 Å excitation the emission from the azulene in naphthalene system is analyzed in terms of three components: a resonance enhanced Raman emission originating from a nonstationary laser photon energy state 800 cm?1 above the S1 origin, a partially relaxed fluorecence originating from the 665 cm?1 vibrational level of S1 and a totally relaxed fluorecence from the S1 origin (14651 cm?1). The interpretation of the spectral lines is based on totally symetric vibrational modes (406, 679, 825,902, 1203, 1269, 1401, and 1586 cm?1) the most prominent of which is the progression forming 825 cm?1 mode. On the basis of both energies and intensities, correlations are made between ground and excited state vibrations and are compared with earlier results. Based on our results, a discussion is given on a plausible relaxation scheme for our system including the influence of Franck—Condon factors on the observability of unrelaxed emission.  相似文献   

10.
Applying resonant Doppler-free 2-photon laser spectroscopy with thermionic diode detection, the cross sections for the excitation energy transfer of the collisional process7Li*(2P 1/2+Cs(6S 1/2)→7Li*(2P 3/2)+Cs(6S 1/2) have been measured. The experimental cross sections, σLi-Cs (1/2→3/2)=890 Å2 and σLi-Cs (3/2→1/2)=430 Å2, are compared with theoretical data obtained by a sudden impact approximation approach taking into account the long-range interaction potentials only. The calculated cross sections show an excitation mixing process at large internuclear distances where Li-Cs dipole-dipole and dipole-quadrupole interaction forces are predominant.  相似文献   

11.
《Chemical physics》1987,112(3):427-442
The fluorescence excitation spectra of pyrene complexes with n-alkanes are reported for the S0 → S1 and S0 → S2 transitions. The S2 spectral shifts are predictable from theory, and by comparison with other molecules, such as perylene. On the other hand, the S1 Resonances of pyrene complexes show unusually small displacements from those of the parent species. The spectra of the butane, pentane and hexane complexes actually exhibit net blue shifts. This behaviour provides good evidence for a repulsive interaction in the S1 state, which is not observed in S2. Moreover, because the butadiene and benzene complexes give predictable red shifts ⩾ 100 cm−1, and these are found to have plane-parallel geometries, the blue shift correlates with a host carbon—guest hydrogen interaction in the repulsive regime. We also report that the ethylene complex of pyrene exhibits a net blue shift on the S0 → S1 transition, and a red shift on S0 → S2 only 75% of the predicted value, based on measurements with perylene complexes. This behaviour strongly indicates that ethylene-pyrene has a T-shaped configuration, as predicted by potential energy calculations.  相似文献   

12.
Fluorescence lifetimes of pyridine vapor were measured by exciting at various vibrational bands in the lowest-energy region of the S1(n,π*) ← S0 transition. The lifetime varies between 35 and 60 ps, depending on the vibronic level excited. The non-radiative decay from S1 is characterized by particularly fast S1 → S0 internal conversion.  相似文献   

13.
The interaction of gold(III) complexes, [Au(cis‐DACH)Cl2]Cl and [Au(cis‐DACH)2]Cl3 complexes (DACH = cis‐1,2‐diaminocyclohexane), with 13C, 15N‐enriched thiourea (Tu) and 1,3‐diazinane‐2‐thione ligands was investigated. The progress of these reactions was monitored by NMR (1H, 13C, and 15N) and UV–vis spectroscopy as well as square wave stripping voltammetry. The kinetic studies of the substitution reactions between the above‐mentioned complexes with thiones in aqueous solutions containing 30 mM KCl, which is used to suppress the hydrolysis of the chloride complexes, were conducted. These reactions were followed under pseudo–first‐order conditions as functions of ligand concentration, pH, and temperature. The activation parameters (ΔH#, ΔS#) were calculated from Eyring plots, and the negative values of ΔS lend support for an associative mechanism. The kinetic data also indicated a relatively higher reactivity of [Au(cis‐DACH)Cl2]Cl than that of [Au(cis‐DACH)2]Cl3 toward the thiones.  相似文献   

14.
Ab initio MRD –CI calculations using a basis set of near Hartree–Fock quality have been carried out to calculate the ground-state electronic structure of S2N+, S2N, and S2N? and the ionization potential, electron affinity, and vertical electronic spectrum of S2N. At the highest level of theory (estimated full CI or FCI ), S2N+ is predicted to have a linear structure with r(N? S) = 1.51 Å. For S2N and S2N?, the minimum in energy at the FCI level corresponds to a quasi-linear [with a barrier height to linearity of about 2.0 kcal mol?1, ] and a bent structure , respectively. The adiabatic/vertical ionization potential and electron affinity of S2N are predicted to be 7.26/7.82 and 1.60/0.79 eV, respectively. Of the several electronic transitions in S2N considered, the ones with the excitation energy of 1.87 eV (X2 A12B2) and 2.87 eV (X2A12B2) are somewhat intense (? = 0.005 and 0.002) and likely to be observed.  相似文献   

15.
We consider the equivalent of the S0(1A1g → T1(3B1u absorption spectrum of benzene obtained by Burland et al. On the basis of this spectrum we suggest that the theoretical rate of the T1(3B1u) → S0(1A1g) intersystem crossing in benzene is faster by several orders of magnitude than that obtained in recent theoretical work. Furthermore, it is suggested that the rate of this process is not retarded drastically upon deuteration, as claimed in the literature. A new interpretation of the So(1A1g) → T1(3B1u absorption spectrum is also given.  相似文献   

16.
The two components of the dual phosphorescence of 1-indanone ( 1 ) and six related ketones ( 2–7 ) possess different excitation spectra exhibiting the vibrational progression characteristic of the S0 → S1 (n, π*) transition (shorter-lived emission) and two bands of the S0 → S2 and 3 (π,π*) 0–0 transitions, respectively. The most favorable intersystem crossing routes are S1 (n, π*) → T (n, π*) and S2,3 (π*) → T (π, π*). Internal conversion to S1 competes more effectively with S (π, π*) → T (π, π*) intersystem crossing only from higher vibrational levels of the S2 and S3 states.  相似文献   

17.
Applying diode-laser resonant fluorescence method, the cross sections for the excitation energy transfer of the collisional process K*(42 P 1/2)+Cs(62 S 1/2)?K*(42 P 3/2)+Cs(62 S 1/2) have been measured. The values we have obtained are σ(1/2→3/2)=77 Å2 and σ(3/2→1/2)=48 Å2. These results complete the sequence of data for the fine-structure mixing of the first-resonance states of alkali atoms colliding with the ground-state caesium atoms.  相似文献   

18.
The incoherent inelastic neutron scattering (IINS) spectrum of the iron (III, III, II) complex [Fe3O(OOCMe)6(py)3](py) shows a pair of magnetic transitions at 199 and 221 cm−1. These are assigned to an exchange-coupled doublet, originating from the transition |S, Sab> = | 1, 1 > → | 2, 2 >, which from previous IINS spectra were predicted to occur at 209 cm−1.  相似文献   

19.
《Chemical physics letters》1987,133(4):353-358
The intensity of fluorescence of poly(diphenylanthracene) (PDPA) has been found to be highly non-linear in excitation laser energy, while either diphenylanthracene or polystyrene with a low loading of covalently bound diphenylanthracene (PS-co-DPA) is linear under the same conditions. It is proposed that a Forster-type annihilation process occurs: S1 + S1 → S0 + Sn → 2S0. The R0 for this process is estimated to be ≈ 35 Å. On the other hand the singlet exciton diffusion constant (ΛS) is estimated to be very low, by the method of comparative quenching.  相似文献   

20.
The ignition of COS + O2 mixtures diluted in argon was studied behind reflected shocks in a single-pulse shock tube over the temperature range of 1100–1700°K. Ignition delay times and the distribution of reaction products before and after ignition were determined experimentally. From a total of 63 tests run at varying initial conditions, the following correlation for the induction times was derived: where β1 = +0.30, β2 = 1.12, and E = 16.9 kcal/mole. Using a reaction scheme of 14 steps, the following values were obtained by a computer modeling of the induction times: β1 = +0.22, β2 = 1.55, and E = 17.3 kcal/mole. The calculations showed that the reaction COS + S → CO + S2 caused the inhibiting effect of the COS. The reaction COS → O ± CO2 + S has a very strong accelerating effect, whereas the parallel channel COS + O → CO + SO shows the opposite effect. It was also shown that the reaction O + S2 → SO + O is very slow and does not contribute to the overall oxidation reaction. It is suggested that the rate constant given to the four-center reaction COS + SO → CO2 + S2, that is, 1011 cm3/mole · sec at 300°K is incorrect. This constant is not much higher than 108 cm3/mole · sec at 1300°K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号