首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes the development of a stability-indicating RP-HPLC method for the determination of atomoxetine hydrochloride (ATX) in the presence of its degradation products generated from forced decomposition studies. The drug substance was subjected to stress conditions of acid, base, oxidation, wet heat, dry heat, and photodegradation. In stability tests, the drug was susceptible to acid, base, oxidation, and dry and wet heat degradation. It was found to be stable under the photolytic conditions tested. The drug was successfully separated from the degradation products formed under stress conditions on a Phenomenex C18 column (250 x 4.6 mm id, 5 microm particle size) by using acetonitrile-methanol-0.032 M ammonium acetate (55 + 05 + 40, v/v/v) as the mobile phase at 1.0 mL/min and 40 degrees C. Photodiode array detection at 275 nm was used for quantitation after RP-HPLC over the concentration range of 0.5-5 microg/mL with a mean recovery of 100.8 +/- 0.4% for ATX. Statistical analysis demonstrated that the method is repeatable, specific, and accurate for the estimation of ATX. Because the method effectively separates the drug from its degradation products, it can be used as a stability-indicating method.  相似文献   

2.
Two sensitive and reproducible methods are described for the quantitative determination of dasatinib in the presence of its degradation products. The first method was based on high performance thin layer chromatography (HPTLC) followed by densitometric measurements of their spots at 280 nm. The separation was on HPTLC aluminium sheets of silica gel 60 F254 using toluene:chloroform (7.0:3.0, v/v). This system was found to give compact spots for dasatinib after development (R F value of 0.23 ± 0.02). The second method was based on high performance liquid chromatography (HPLC) of the drug from its degradation products on reversed phase, PerfectSil column [C18 (5 μm, 25 cm × 4.6 mm, i.d.)] at ambient temperature using mobile phase consisting of methanol:20 mM ammonium acetate with acetic acid (45:55, v/v) pH 3.0 and retention time (t R = 8.23 ± 0.02 min). Both separation methods were validated as per the ICH guidelines. No chromatographic interference from the tablet excipients was found. Dasatinib was subjected to acid–alkali hydrolysis, oxidation, dry heat, wet heat and photo-degradation. The drug was susceptible to acid–alkali hydrolysis and oxidation. The drug was found to be stable in neutral, wet heat, dry heat and photo-degradation conditions. As the proposed analytical methods could effectively separate the drug from its degradation products, they can be employed as stability indicating.  相似文献   

3.
A stability-indicating HPLC assay method was developed for the quantitative determination of tadalafil in bulk samples and in pharmaceutical dosage forms in the presence of the degradation products. It involved a 250 mm × 4.6 mm, 5 μm C-18 column. The gradient LC method employs solution A and B as mobile phase. Solution A contains a mixture of buffer (phosphate buffer and tetra-n-butyl ammonium hydrogen sulfate) pH 2.5: acetonitrile (80:20, v/v) and solution B contains a mixture of water: acetonitrile (20:80, v/v). The flow rate was 1.0 mL min−1 and the detection wavelength was 220 nm. The retention time of tadalafil is about 17 min. Tadalafil was subjected to different ICH prescribed stress conditions. Degradation was found to occur in hydrolytic and to some extent in oxidative stress conditions, while the drug was stable to photolytic and thermal stress. The drug was particularly labile under alkaline hydrolytic conditions. The drug was subjected to stress conditions of hydrolysis, oxidation, photolysis and thermal degradation. The assay of stress samples was calculated against a qualified reference standard and the mass balance was close to 99.5%. The developed RP-LC method was validated with respect to linearity, accuracy, precision and ruggedness.  相似文献   

4.
Knowledge and understanding of the stability profile of a drug is important as it affects its safety and efficacy. In the present work, besifloxacin, a new, fourth‐generation fluoroquinolone antibiotic, was subjected to different forced‐degradation conditions as per International Conference on Harmonization (ICH) guidelines such as hydrolysis (acid, base and neutral), oxidation, thermal and photolysis. The drug degraded under acidic, basic, oxidative and photolytic conditions while it was found to be stable under dry heat and neutral hydrolytic conditions. In total, five degradation products (DPs) were formed under different conditions—DP1 and DP2 (photolysis), DP3 (oxidation), DP4 (acidic), DP3 and DP5 (basic). The chromatographic separation of besifloxacin and its degradation products was achieved on a Sunfire C18 (250 mm × 4.6 mm, 5 μm) column with 0.1% aqueous formic acid–acetonitrile as a mobile phase. The gradient RP‐HPLC method was developed and validated as per ICH guidelines. The degradation products were characterized with the help of LC–ESI–QTOF mass spectrometric studies and the most likely degradation pathway of the drug was proposed. In silico toxicity assessment of the drug and its degradation products was carried out, which indicated that DP3 and DP4 carry a mutagenicity alert.  相似文献   

5.
Agrawal H  Kaul N  Paradkar AR  Mahadik KR 《Talanta》2003,61(5):581-589
A sensitive, selective, precise and stability indicating high-performance thin layer chromatographic method of analysis of clopidogrel bisulphate both as a bulk drug and in formulations was developed and validated in pharmaceutical dosage form. The method employed TLC aluminium plates precoated with silica gel 60F-254 as the stationary phase. The solvent system consisted of carbon tetrachloride-chloroform-acetone (6:4:0.15, v/v/v). This system was found to give compact spots for clopidogrel bisulphate (Rf value of 0.30±0.01). Clopidogrel bisulphate was subjected to acid and alkali hydrolysis, oxidation, photodegradation and dry heat treatment. Also the degraded products were well separated from the pure drug. Densitometric analysis of clopidogrel bisulphate was carried out in the absorbance mode at 230 nm. The linear regression data for the calibration plots showed good linear relationship with r2=0.999±0.001 in the concentration range of 200-1000 ng. The mean value of correlation coefficient, slope and intercept were 0.999±0.001, 0.093±0.011 and 8.83±0.99, respectively. The method was validated for precision, accuracy, ruggedness and recovery. The limits of detection and quantitation were 40 and 120 ng per spot, respectively. The drug undergoes degradation under acidic and basic conditions, oxidation and dry heat treatment. All the peaks of degraded product were resolved from the standard drug with significantly different Rf values. This indicates that the drug is susceptible to acid-base hydrolysis, oxidation and dry heat degradation. Statistical analysis proves that the method is reproducible and selective for the estimation of the said drug. As the method could effectively separate the drug from its degradation products, it can be employed as a stability indicating one.  相似文献   

6.
A simple, sensitive, selective, precise and stability-indicating thin-layer chromatographic method for determination of dutasteride both as a bulk drug and as pharmaceutical tablets was developed and validated as per the International Conference on Harmonization guidelines. The method employed thin-layer chromatography aluminium plates precoated with silica gel 60F254 as the stationary phase and the mobile phase consisted of acetonitrile:methanol:dichloromethane in the ratio of 2.0:1.0:2.0, v/v/v. This solvent system was found to give compact spots for dutasteride (R f value of 0.64 ± 0.02). Densitometric analysis of dutasteride was carried out in the absorbance mode at 244 nm. The linear regression analysis data for the calibration plots showed good linear relationship with r = 0.9943 with respect to peak area in the concentration range of 100–600 ng per band. The method was validated for precision, accuracy, ruggedness and recovery. The limits of detection and quantitation were 7.54 and 22.85 ng per band, respectively. Dutasteride was subjected to acid and alkali hydrolysis, oxidation, photo degradation, dry heat and wet heat treatment. The drug undergoes degradation under acidic, basic conditions, photolytic, oxidative and upon wet and dry heat treatment. The degraded products were well separated from the pure drug. The statistical analysis proves that the developed method for quantification of dutasteride as bulk drug and from pharmaceutical tablets is reproducible and selective. As the method could effectively separate the drug from its degradation products, it can be employed as stability-indicating.  相似文献   

7.
Acyclovir is an antiviral drug of choice in the treatment of many types of herpes virus infections, including genital herpes simplex infections, herpetic conjunctivitis, herpes simplex encephalitis, etc. The present study describes the degradation behavior of acyclovir under different International Conference on Harmonization recommended stress conditions (hydrolysis, oxidation, photolysis, and thermal decomposition) in order to establish a validated stability-indicating high-performance liquid chromatography method. Acyclovir is found to degrade extensively in acidic conditions and oxidative stress. Mild degradation of the drug occurs in alkaline and neutral conditions. The drug is stable to dry heat. The drug is found to be sufficiently stable after light exposure in a solid state; however, photolytic degradation is observed when the drug is exposed as a solution in water. The major degradation product in acidic hydrolysis and photolysis is identified as guanine through comparison with the standard. Separation of drug and the degradation products under various conditions is successfully achieved on a C-18 column utilizing water-methanol in the ratio of 90:10. The flow rate is 1 mL/min, and the detection wavelength is 252 nm. The method is validated with respect to linearity, precision, accuracy, selectivity, specificity, and robustness. The mean values of slope and correlation coefficient are 39.307 and 0.9998 with relative standard deviation values less than 2%. The recovery of the drug is found to be in the range of 97.34% to 102.35%. From the previous study it is concluded that the stability-indicating method developed for acyclovir can be used for analysis of the drug in various stability samples.  相似文献   

8.
Abiraterone acetate is a prodrug of Abiraterone widely used for the treatment of metastatic castration resistant prostate cancer. In this study, a simple, sensitive, and rapid stability-indicating reverse phase HPLC method was developed and validated for the determination of Abiraterone acetate in bulk and its pharmaceutical formulation. The method was developed by HPLC using a Hypersil ODS C-18 (150 mm × 4.6 mm, 5 µm) column in a isocratic mode with mobile phase constituted by potassium phosphate buffer and acetonitrile (40:60, v/v%) flow rate was 1.0 mL min?1, column temperature of 30°C, UV detection wavelength 235 nm, and injection volume of 20 µL. The validated parameters were in accordance with FDA and ICH specifications, assay exhibited a linear range of 25–250 µg mL?1 with regression (r2) coefficient 0.9998. The limits of detection and quantification were 0.23 and 0.70 µg mL. Accuracy was between 99.34 and 100.07%. The drug was subjected to various stress conditions like acidic, base hydrolysis, oxidation, thermal, and photolytic degradation. Stress study Abiraterone acetate was found susceptible to degrade under hydrolytic (acid and base) conditions. The proposed method has stability indicating the resolution of the main peak from their degradation peaks. The validated method is suitable for quality control application and reduced analysis time.  相似文献   

9.
《Analytical letters》2012,45(11):2033-2043
Abstract

A simple isocratic high performance liquid chromatography (HPLC) method was developed for the determination of Clindamycin palmitate hydrochloride in drug substance and oral solutions. The XTerra RP18 250 mm × 4.6 mm × 5 µ column was used as stationary phase, and the mobile phase was a 0.5% solution of Triethylamine in a 1:9 (v/v) water:methanol mixture adjusted to pH 5.0 with orthophosphoric acid. The detector wavelength was selected at 210 nm and flow rate was maintained at 1.50 ml/min. Forced degradation studies were performed for drug substance, 75 mg/5 ml oral solution and placebo, using acid, base, oxidation, temperature, humidity, and photolytic degradation to demonstrate the specificity of the method. The developed method was validated as per ICH method validation guidelines.  相似文献   

10.

A simple, sensitive, selective, precise and stability indicating high-performance thin-layer chromatographic method was developed for the determination of tamsulosin (TAM) in bulk and tablet formulation. Validation was carried out in compliance with International Conference on Harmonization guidelines. The method employed thin-layer chromatography aluminium plates pre-coated with silica gel 60F254 as the stationary phase and the mobile phase consisted of acetonitrile/methanol/dichloromethane (2.0: 1.0: 2.0, v/v/v). This solvent system was found to give compact spots for tamsulosin (R f = 0.27 ± 0.02). Densitometric analysis of TAM was carried out in the absorbance mode at 286 nm. Linear regression analysis showed good linearity (r 2 = 0.9993) with respect to peak area in the concentration range of 300–800 ng per band. The method was validated for precision, accuracy, ruggedness and recovery. Limits of detection and quantitation were 8.49 and 25.72 ng per band, respectively. TAM was subjected to acid and alkali hydrolysis, oxidation, photo degradation, dry heat and wet heat treatment. The drug underwent degradation under acidic, basic and photolytic conditions. The degraded products were well separated from the pure drug. Statistical analysis proved that the developed method, used for quantification of TAM as a bulk drug and present in pharmaceutical tablets, was reproducible and selective.

  相似文献   

11.
A simple, sensitive, selective, precise and stability indicating high-performance thin-layer chromatographic method was developed for the determination of tamsulosin (TAM) in bulk and tablet formulation. Validation was carried out in compliance with International Conference on Harmonization guidelines. The method employed thin-layer chromatography aluminium plates pre-coated with silica gel 60F254 as the stationary phase and the mobile phase consisted of acetonitrile/methanol/dichloromethane (2.0: 1.0: 2.0, v/v/v). This solvent system was found to give compact spots for tamsulosin (R f = 0.27 ± 0.02). Densitometric analysis of TAM was carried out in the absorbance mode at 286 nm. Linear regression analysis showed good linearity (r 2 = 0.9993) with respect to peak area in the concentration range of 300–800 ng per band. The method was validated for precision, accuracy, ruggedness and recovery. Limits of detection and quantitation were 8.49 and 25.72 ng per band, respectively. TAM was subjected to acid and alkali hydrolysis, oxidation, photo degradation, dry heat and wet heat treatment. The drug underwent degradation under acidic, basic and photolytic conditions. The degraded products were well separated from the pure drug. Statistical analysis proved that the developed method, used for quantification of TAM as a bulk drug and present in pharmaceutical tablets, was reproducible and selective.  相似文献   

12.
A gradient LC–MS method was developed for the identification and characterization of degradants of moexipril using liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI‐MS/MS). Moexipril was subjected to hydrolysis (acid, base and neutral), oxidation, photolytic and thermal degradation conditions as mentioned in ICH guidelines Q1A (R2). The drug degraded under hydrolysis, oxidation and photolytic conditions, but it was stable under thermal conditions. In total, five degradants were formed and separated on an Agilent XDB C‐18 column (4.6 × 150 mm, 5 μm) in a gradient elution method. Four degradants ( D1 , D2 , D4 and D5 ) under acidic conditions, three degradants ( D2 , D3 and D4 ) under basic conditions and three degradants ( D1 , D4 and D5 ) under neutral and oxidative stress conditions were formed. In addition, two degradants ( D4 and D5 ) were formed under photolytic stress conditions. To elucidate the structures of degradants, fragmentation of moexipril and its degradants was studied using LC–MS/MS experiments and accurate mass measurements (HRMS) data. The fragment ions in the product ion tandem mass spectra of all the degradants were compared with those of moexipril and assigned the probable structures for the degradants.  相似文献   

13.
A simple stability-indicating LC method has been developed for the quantitative determination of dutasteride in bulk drug samples and in pharmaceutical dosage forms in the presence of degradation products. The retention time of dutasteride is about 7 min. The drug was subjected to stress conditions of hydrolysis, oxidation, photolysis and thermal degradation. Degradation was found to occur under hydrolysis and to a lesser extent under oxidation conditions but the compound was stable to photolytic and thermal stress. The assay of stress samples was calculated against a reference standard and the mass balance was found close to 99.3%. The developed method was validated with respect to linearity, accuracy, precision and ruggedness.  相似文献   

14.
A novel stability-indicating high-performance liquid chromatographic (HPLC) method was developed and validated for assay and determination of impurities of emtricitabine in drug substance. Emtricitabine was found to be degraded under acidic, alkaline, and oxidative stress conditions and to be more labile under oxidative conditions. The drug proved to be stable to dry heat and photolytic degradation. Resolution of major and minor degradation impurities was achieved on an Intersil ODS-3V column utilizing 10 mM sodium phosphate buffer and methanol (85:15) as mobile phase. Detection was at 280 nm. Validation studies were performed as per ICH recommended conditions. The developed method was found to be linear, accurate, specific, selective, precise, and robust.  相似文献   

15.
Gundecha  Satyam  Patel  Mital  Mayur  Y. C. 《Chromatographia》2022,85(7):575-588

Pharmaceutical regulators are worried about medication quality and stability since drug degradation may result in harmful chemicals. Erlotinib (ERL) is a tyrosine kinase inhibitor associated with the epidermal growth factor receptor (EGFR) containing susceptible functional groups such as quinazoline and amine ketone, methoxy, and ethoxy leads to a reduction in pharmaceutical quality. According to the ICH-Q1A (R2) guideline, the goal of ERL stability studies is to establish its susceptibility to degradation under various environmental conditions. A novel isocratic stability–indicating liquid chromatography method has been developed using systemic quality by design (QbD) approach. The QbD strategy includes screening and optimization as phases. Placket Burman was used for primary parameters screening, and critical factors were optimized with response surface design. The prepared degradation samples (acid, base, neutral hydrolysis, oxidative, photolytic, and thermal) were separated using a Shimadzu GIST C18 column (250 mm?×?4.6 mm, 5 µm) with 15 mM ammonium formate: ACN (58:42% v/v) as mobile phase, 0.9 mL/min flow rate, and 246 nm wavelength, which was found to be LC–MS compatible. A total of six degradation products (DPs) were identified with the optimized chromatography method. The drug was sensitive toward acidic and basic hydrolysis, but it remained stable under neutral, oxidative, thermal, and photolytic stress conditions. The optimized method was sensitive, specific, and robust, with linearity ranging from 10 to 35 µg/mL, with a correlation coefficient (R2?=?0.9997). The analytical method greenness score was calculated and observed that the developed method is green.

  相似文献   

16.
A simple and rapid reversed-phase liquid chromatographic method was developed for the related substances determination and quantitative evaluation of ziprasidone hydrochloride, which is used as an antipsychotic agent. Forced degradation studies were performed on bulk sample of ziprasidone hydrochloride using acid, base, oxidative hydrolysis, thermal stress and photolytic degradation. Mild degradation of the drug substance was observed during thermal stress and considerable degradation observed during base hydrolysis. The chromatographic method was fine tuned using the samples generated from forced degradation studies. Good resolution between the peaks corresponds to synthetic impurities and degradation products from the analyte were achieved on YMC Pack Pro C18 column using the mobile phase consists of a mixture of 0.05% v/v of phosphoric acid in water and acetonitrile. The stressed test solutions were assayed against the qualified working standard of ziprasidone hydrochloride and the mass balance in each case was close to 99.7% indicating that the developed method was stability-indicating. Validation of the developed method was carried out as per ICH requirements.  相似文献   

17.
Macitentan (MAC) is a pulmonary arterial hypertension (PAH) drug marketed as a tablet and often has stability issues in the final dosage form. Quantitative determination of MAC and its associated impurities in tablet dosage form has not been previously reported. This study quantified impurities present in Macitentan tablets using a binary solvent-based gradient elution method using reversed phase-high performance liquid chromatography. The developed method was validated per International Conference on Harmonization (ICH) guidelines and the drug product was subjected to forced degradation studies to evaluate stability. The developed method efficiently separated the drug and impurities (48 min) without interference from solvents, excipients, or other impurities. The developed method met all guidelines in all characteristics with recoveries ranging from 85%-115%, linearity with r2 ≥ 0.9966, and substantial robustness. The stability-indicating nature of the method was evaluated using stressed conditions (hydrolysis:1 N HCl at 80℃/15 min; 1 N NaOH at 25℃/45 min; humidity stress (90% relative humidity) at 25℃ for 24 h, oxidation:at 6% (v/v) H2O2, 80℃/15 min, thermolysis:at 105℃/16 h and photolysis:UV light at 200 Wh/m2; Fluorescent light at 1.2 million luxh). Forced degradation experiments showed that the developed method was effective for impurity profiling. All stressed samples were assayed and mass balance was>96%. Forced degradation results indicated that MAC tablets were sensitive to hydrolysis (acid and alkali) and thermal conditions. The developed method is suitable for both assay and impurity determination, which is applicable to the pharmaceutical industry.  相似文献   

18.
An enantioselective stability-indicating high performance liquid chromatographic method was developed for the analysis of arotinolol in standard solution. The degradation behaviour of arotinolol was investigated under different stress conditions recommended by International Conference on Harmonization (ICH). Resolution of the drug and complete separation from its degradation products were successfully achieved on a Chirobiotic V column, using UV detector set at 315 nm, polar organic mobile phase (POM) consisting of methanol:glacial acetic acid:triethylamine, 100:0.02:0.03, (v/v/v), and a flow rate of 1 ml/min. The drug was subjected to oxidation, hydrolysis, photolysis, and heat to apply stress conditions. The drug was found to degrade in alkaline, acidic, oxidative conditions and when exposed to heat. The drug was stable to sunlight. The method reported here has also been successfully applied to pharmaceutical formulation and to human plasma that spiked with stock solutions of arotinolol enantiomers.Arotinolol enaniomers were recovered from plasma by using liquid–liquid extraction procedure with ethyl ether. The method was highly specific, where degradation products and coformulated compounds did not interfere, and was sensitive with good precision and accuracy and was linear over the range of 50–400 ng/ml (R2 > 0.9981) with a detection limit of 20 ng/ml for each enantiomer. The mean extraction efficiency for arotinolol was in the ranges 96–104% for each enantiomer. The mean relative standard deviation (RSD) of the results of within-day precision and accuracy of the drug were ?7.1%. There was no significant difference between inter- and intra-day studies for each enantiomers which confirmed the reproducibility of the assay. The overall recoveries of arotinolol enantiomers from pharmaceutical formulations were in the ranges 97.6–101.8%.  相似文献   

19.
《色谱》2016,(3)
The present study deals with the forced degradation behavior of dexlansoprazole under International Conference on Harmonisation(ICH)prescribed stress conditions. The drug was found to be more labile under acid,base,neutral,oxidative hydrolysis and thermal stress,while it was moderately stable under photolytic conditions. The known and unknown degradation products were separated on a C-18 column using a stabilityindicating method. Liquid chromatography-mass spectrometry(LC-MS)analysis was performed for all the degradation studies. Isolation and structure characterization of oxidation degradation products were executed using sophisticated tools,viz. preparative high performance liquid chromatography(HPLC),liquid chromatographymass spectrometry / time of flight(LC-MS / TOF),liquid chromatography-tandem mass spectrometry(LC-MS /MS),and nuclear magnetic resonance(NMR). This study demonstrates an ample methodology of degradation studies and structure elucidation of unknown degradation products of dexlansoprazole,which helps in the development and stability study of active pharmaceutical ingredients and formulated products.  相似文献   

20.
The present study deals with the forced degradation behavior of dexlansoprazole under International Conference on Harmonisation (ICH) prescribed stress conditions. The drug was found to be more labile under acid, base, neutral, oxidative hydrolysis and thermal stress, while it was moderately stable under photolytic conditions. The known and unknown degradation products were separated on a C-18 column using a stability-indicating method. Liquid chromatography-mass spectrometry (LC-MS) analysis was performed for all the degradation studies. Isolation and structure characterization of oxidation degradation products were executed using sophisticated tools, viz. preparative high performance liquid chromatography (HPLC), liquid chromatography-mass spectrometry/time of flight (LC-MS/TOF), liquid chromatography-tandem mass spectrometry (LC-MS/MS), and nuclear magnetic resonance (NMR). This study demonstrates an ample methodology of degradation studies and structure elucidation of unknown degradation products of dexlansoprazole, which helps in the development and stability study of active pharmaceutical ingredients and formulated products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号