首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Chemical physics》1987,114(1):111-116
The collisional deactivation of the internal energy of vibrationally highly excited hexafluorobenzene (HFB) molecules was examined by the analysis of ultraviolet absorption spectra of excited HFB molecules produced by excitation with an ArF(193 nm) laser. The decay time profile of the internal energy was calculated from the observed absorption decay profile of the hot molecule using the conversion relation between the absorbance by hot molecules and the internal energy. Thus the average energy 〈ΔE〉 transferred per collision was estimated by two different models; energy-independent and energy-dependent function for the decay of the internal energy. The obtained values of 〈ΔE〉 indicate that the energy-dependent model may give reasonable values for 〈ΔE〉, but as far as the value of 〈ΔE〉 is concerned, the energy-independent model is likely to be applicable to the analysis in this reaction system. The collisional deactivation mechanism of the hot HFB molecule and the heating-up effect observed at shorter wavelengths are discussed on the basis of the conversion curve.  相似文献   

2.
Collisional energy-transfer probability distribution functions of highly vibrationally excited molecules and the existence of supercollisions remain as the outstanding questions in the field of intermolecular energy transfer. In this investigation, collisional interactions between ground state Kr atoms and highly vibrationally excited azulene molecules (4.66 eV internal energy) were examined at a collision energy of 410 cm-1 using a crossed molecular beam apparatus and time-sliced ion imaging techniques. A large amount of energy transfer (1000-5000 cm-1) in the backward direction was observed. We report the experimental measurement for the shape of the energy-transfer probability distribution function along with a direct observation of supercollisions.  相似文献   

3.
4.
Model trajectory calculations of the energy transfer processes in collisions of Ar with highly vibrationally excited CH4, CD4, SiH4 and CF4 are performed. Special attention is payed to the calculation of the energy transferred to active (vibrational) degrees of freedom. The results support the diffusion model of excitation-dissociation and give the low pressure collision efficiency βc which qualitatively agrees with experiment in magnitude and temperature dependence.  相似文献   

5.
The gas-phase Boudouard disproportionation reaction between two highly vibrationally excited CO molecules in the ground electronic state has been studied in optically pumped CO. The gas temperature and the CO vibrational level populations in the reaction region, as well as the CO2 concentration in the reaction products have been measured using FTIR emission and absorption spectroscopy. The results demonstrate that CO2 formation in the optically pumped reactor is controlled by the high CO vibrational level populations, rather than by CO partial pressure or by flow temperature. The disproportionation reaction rate constant has been determined from the measured CO2 and CO concentrations using the perfectly stirred reactor (PSR) approximation. The reaction activation energy, 11.6 ± 0.3 eV (close to the CO dissociation energy of 11.09 eV), was evaluated using the statistical transition state theory, by comparing the dependence of the measured CO2 concentration and of the calculated reaction rate constant on helium partial pressure. The disproportionation reaction rate constant measured at the present conditions is kf = (9 ± 4) × 10−18 cm3/s. The reaction rate constants obtained from the experimental measurements and from the transition state theory are in good agreement.  相似文献   

6.
A treatment is presented for the effect of intermolecular vibrational energy transfer on the diffusion coefficient of vibrationally excited molecules. An analytic treatment based on random walk statistics and a Monte Carlo type calculation have been performed. Both methods yield very similar results which correlate well with existing experimental studies. A hard sphere collision model is treated extensively with comparisons made to other internmolecular potentials. The results support the involvement of long range energy transfer in V → V interactions. The effect of temeprature on the diffusion coefficient of vibrationally excited molecules is calculated, with applications to the CO*2CO2 system.  相似文献   

7.
D. S. Urch 《Tetrahedron》1972,28(24):6007-6011
Possible decomposition routes for vibrationally excited hydrocarbons are critically considered using a simple “symmetry” based model. It is shown that C---C bond rupture is characterised by a lower activation energy than the molecular cleavage of hydrogen, although the latter reaction is less endothermic. Other possible decomposition reactions of excited species are also considered.  相似文献   

8.
《Chemical physics letters》1985,119(4):298-304
Rates for vibrational relaxation of HCl(ν = 1.2) in solid xenon at 40 and 146 K are reported and are compared to the rate of relaxation of HCl(ν = 1) in liquid xenon near the freezing point. Upon freezing, the rate of relaxation of HCl(ν = 1) is found to decrease significantly and emission from HCl(ν = 2), absent in the liquid phase, is detected. Both of these effects are attributed to a significant decrease in mobility of HCl molecules in the solid phase as compared to the liquid phase. At both 40 and 146 K, the ratio of relaxation rates for HCl(ν = 2) to HCl(ν = 1) is found to deviate significantly from the harmonic oscillator prediction of 2:1. The rate of relaxation for HCl(ν = 1) by xenon is found to be similar in both liquid solution at 200 K and in the solid at 146 K.  相似文献   

9.
Excitation functions from quasiclassical trajectory calculations on the H + H2O --> OH + H2, H + HF --> F + H2, and H + H'F --> H' + HF reactions indicate a different behavior at low and high vibrational excitation of the breaking bond. When the reactant tri- or diatomic molecule is in vibrational ground state or in a low vibrationally excited state, all these reactions are activated; i.e., there is a nonzero threshold energy below which there is no reaction. In contrast, at high-stretch excited-states capture-type behavior is observed; i.e., with decreasing translational energy the reactive cross-section diverges. The latter induces extreme vibrational enhancement of the thermal rate consistent with the experiments. The results indicate that the speed-up observed at high vibrational excitation is beyond the applicability of Polanyi's rules in their common form; instead, it can be interpreted in terms of an attractive potential acting on the attacking H atom when it approaches the reactant with a stretched X-H bond.  相似文献   

10.
11.
The energy transfer between Kr atoms and highly vibrationally excited, rotationally cold biphenyl in the triplet state was investigated using crossed-beam/time-of-flight mass spectrometer/time-sliced velocity map ion imaging techniques. Compared to the energy transfer of naphthalene, energy transfer of biphenyl shows more forward scattering, less complex formation, larger cross section for vibrational to translational (V→T) energy transfer, smaller cross section for translational to vibrational and rotational (T→VR) energy transfer, larger total collisional cross section, and more energy transferred from vibration to translation. Significant increase in the large V→T energy transfer probabilities, termed supercollisions, was observed. The difference in the energy transfer of highly vibrationally excited molecules between rotationally cold naphthalene and rotationally cold biphenyl is very similar to the difference in the energy transfer of highly vibrationally excited molecules between rotationally cold naphthalene and rotationally hot naphthalene. The low-frequency vibrational modes with out-of-plane motion and rotationlike wide-angle motion are attributed to make the energy transfer of biphenyl different from that of naphthalene.  相似文献   

12.
Vibrationally highly excited molecules react extremely fast with atoms and probably with radicals. The phenomenon can be utilized for selectively enhancing the rate of reactions of specific bonds. On the basis of quasiclassical trajectory calculations, the paper analyzes mechanistic details of a prototype reaction, H + HF(v). At vibrational quantum numbers v above 2, the reaction exhibits capture-type behavior, that is, the reactive cross section diverges as the relative translational energy of the partners decreases, both for the abstraction and for the exchange channel. The mechanism of the reaction for both channels is different at low and at high translational energy. At low vibrational energy, the reaction is activated, which is switched to capture-type at high excitation. The reason is an attractive potential that acts on the attacking H atom when the HF molecule is stretched. In contrast to the 6-SEC potential surface of Mielke et al., the switch cannot be observed on the Stark-Werner potential surface, due to a small artificial barrier at high H-HF separation, preventing the reactants from obeying the attractive potential and also proving the importance of the latter. The exchange reaction can be observed even when the total energy available for the partners is below the exchange barrier, because at low translational energies the product F atom of a successful abstraction step can re-abstract that H atom from the intermediate product H2 molecule that was originally the attacker.  相似文献   

13.
The non-radiative decay rates of triplet benzene and 2-chloronaphthalene were determined as a function of excitation energy. As the excitation energies were increased, the non-radiative decay rates increased gradually. In the case of 2-chloronaphthalene it increased rapidly for the excitation energies above about 38000 cm-1.  相似文献   

14.
15.
A simple method to generate and characterize a pure highly vibrationally excited azulene molecular beam is demonstrated. Azulene molecules initially excited to the S4 state by 266-nm UV photons reach high vibrationally excited levels of the ground electronic state upon rapid internal conversion from the S4 electronically excited state. VUV laser beams at 157 and 118 nm, respectively, are used to characterize the relative concentrations of the highly vibrationally excited azulene and the rotationally and vibrationally cooled azulene in the molecular beam. With a laser intensity of 34 mJ/cm2, 75% of azulene molecules absorb a single 266-nm photon and become highly vibrationally excited molecules. The remaining ground-state azulene molecules absorb two or more UV photons, ending up either as molecular cations, which are repelled out of the beam by an electric field, or as dissociation fragments, which veer off the molecular-beam axis. No azulene without absorption of UV photons is left in the molecular beam. The molecular beam that contains only highly vibrationally excited molecules and carrier gas is useful in various experiments related to the studies of highly vibrationally excited molecules.  相似文献   

16.
We report on full-dimensional vibrational quantum dynamics of the highly excited ammonia isotopologue NHD(2) using a newly developed potential energy surface and the MCTDH program package. The calculations allow to realistically simulate an infrared laser induced stereomutation reaction at the pyramidal nitrogen atom in the femtosecond time domain. Our results allow for a thorough qualitative and quantitative understanding of infrared photoinduced stereomutation kinetics, the underlying quantum dynamics, and the reaction mechanisms. Comparison is made with a previous, reduced dimensionality study of the same reaction [R. Marquardt, M. Quack, I. Thanopulos, and D. Luckhaus, J. Chem. Phys. 118, 643 (2003)], and it is shown that slight variances of reduced spaces lead to significantly different kinetics. Because the quantum dynamics depends subtly on variances of reduced spaces, reduced dimensionality treatments are not reliable even for qualitative predictions of the stereomutation kinetics. The first direct comparison between the Multiconfigurational Time Dependent Hartree [M. H. Beck, A. Ja?ckle, G. A. Worth et al., Phys. Rep. 324, 1 (2000)] and Unimolecular Reactions Induced by Monochromatic Infrared Radiation [M. Quack and E. Sutcliffe, QCPE Bulletin 6, 98 (1986)] program packages on a specific, four dimensional quantum dynamical problem allows for their full validation in the present work.  相似文献   

17.
The energy transfer between Kr atoms and highly vibrationally excited, rotationally cold phenanthrene and diphenylacetylene in the triplet state was investigated using crossed-beam/time-of-flight mass spectrometer/time-sliced velocity map ion imaging techniques. Compared to the energy transfer between naphthalene and Kr, energy transfer between phenanthrene and Kr shows a larger cross-section for vibrational to translational (V → T) energy transfer, a smaller cross-section for translational to vibrational and rotational (T → VR) energy transfer, and more energy transferred from vibration to translation. These differences are further enlarged in the comparison between naphthalene and diphenylacetylene. In addition, less complex formation and significant increases in the large V → T energy transfer probabilities, termed supercollisions in diphenylacetylene and Kr collisions were observed. The differences in the energy transfer between these highly vibrationally excited molecules are attributed to the low-frequency vibrational modes, especially those vibrations with rotation-like wide-angle motions.  相似文献   

18.
Radiative relaxation of Cr(CO)5 was investigated by two techniques: a standard two-pulse photodissociation experiment and by using the branching ratio of its reaction with oxygen as an ion thermometric probe. Photoexcitation at 1064 nm was used to prepare highly vibrationally excited Cr(CO)5. Although the overall oxidation rate changes only slightly upon excitation (actually decreasing by a factor of 1.2 ± 0.1), the primary product distribution shifts dramatically, from Cr(CO)3O (the thermodynamic product) to Cr(CO)3O2 (the kinetic product). The two-pulse photodissociation measurement gave a radiative relaxation rate constant (k rad) of 15 ± 2 s−1, whereas the branching ratio experiments gave a k rad value of 3. 3 ± 0.7 s−1. The large difference between these two values is due to the difference in Cr(CO)5 internal energy ranges probed by the two techniques. In the high internal energy regime interrogated by the two-pulse measurements (about 12,000 to 6000 cm−1), the strongly emitting C-O stretching modes are populated and contribute to fast relaxation. In contrast, the branching ratio measurements remain sensitive to internal energy changes all the way down to thermal energies, where the C-O stretches are depopulated and thus unavailable for radiative relaxation.  相似文献   

19.
20.
The average downward energy transfer (〈Δ Edown〉) is obtained for highly vibrationally excited acetyl chloride with Ne and C2H4 bath gases at ca. 870 K. Data are obtained by the technique of very low-pressure pyrolysis (VLPP). Fitting these data by solution of the appropriate reaction-diffusion integrodifferential master equation yields the gas/gas collisional energy transfer parameters: 〈Δ Edown〉 values are 220 ± 10 cm?1 (Ne bath gas) and 330 ± 20 cm?1 (C2H4). These energy transfer quantities are much less than those predicted by statistical theories, or those observed for similar sized molecules such as CH3CH2Cl. These results are explained by the qualitative predictions of the biased random walk model wherein the fundamental mechanism of energy transfer is the multiple interactions between the bath gas and the individual atoms of the reactant molecule, during the course of the collision event. The charge distribution of acetyl chloride decreases the number of such interactions, thereby reducing the amount of energy transferred per collision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号