首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N. Neto 《Chemical physics》1984,91(1):101-112
Curvilinear internal coordinates are considered in terms of cartesian displacements in a molecule-fixed basis determined by the Eckart-Sayvetz conditions. The latter are interpreted as a set of restrictions on the metrics of the space and define cartesian displacements of “pure” vibrational character expanded to any order in terms of internal coordinates. Explicit expressions for expansion coefficients are given as a function of contravariant components of the metric tensor taken from existing table. A compact notation is proposed for anharmonic force constants, expansion coefficients of redundancies and coupling terms of the rotation—vibration hamiltonian.  相似文献   

2.
. Molecular matrix elements of a physical operator are expanded in terms of polycentric matrix elements in the atomic basis by multiplying each by a geometrical factor. The number of terms in the expansion can be minimized by using molecular symmetry. We have shown that irreducible tensor operators can be used to imitate the actual physical operators. The matrix elements of irreducible tensor operators are easily computed by choosing rational irreducible tensor operators and irreducible bases. A set of geometrical factors generated from the expansion of the matrix elements of irreducible tensor operator can be transferred to the expansion of the matrix elements of the physical operator to compute the molecular matrix elements of the physical operator. Two scalar product operators are employed to simulate molecular two-particle operators. Thus two equivalent approaches to generating the geometrical factors are provided, where real irreducible tensor sets with real bases are used. Received: 3 September 1996 / Accepted: 19 December 1996  相似文献   

3.
A new hierarchical expansion of the kinetic energy operator in curvilinear coordinates is presented and modified vibrational self-consistent field (VSCF) equations are derived including all kinematic effects within the mean field approximation. The new concept for the kinetic energy operator is based on many-body expansions for all G matrix elements and its determinant. As a test application VSCF computations were performed on the H(2)O(2) molecule using an analytic potential (PCPSDE) and different hierarchical approximations for the kinetic energy operator. The results indicate that coordinate-dependent reduced masses account for the largest part of the kinetic energy. Neither kinematic couplings nor derivatives of the G matrix nor its determinant had significant effects on the VSCF energies. Only the zero-point value of the pseudopotential yields an offset to absolute energies which, however, is irrelevant for spectroscopic problems.  相似文献   

4.
The conventional vibration-rotation Hamiltonian for an asymmetric-top molecule is rewritten by expanding the elements of the inverse inertial tensor about the equilibrium molecular geometry. The approach allows the identification of terms in the Hamiltonian that couple states differing by two, three, or four vibrational quanta and hence the calculation of dimensioned Coriolis xi coupling coefficients for interacting fundamental, overtone, and combination levels. The matrix elements that result from the application of the expanded Hamiltonian depend upon the harmonic vibrational wave numbers, equilibrium moments of inertia, Coriolis zeta parameters, and the derivatives of the elements of the inertial tensor matrix with respect to each of the normal coordinates. The Coriolis coupling coefficients may be calculated through evaluation of the summations that result from the appropriate terms. The validity of the approach is demonstrated through the calculation of coupling coefficients for interacting levels in formaldehyde and ketene. The uncertainty in the calculated values of the coupling coefficients is typically better than +/-6%, although the values calculated for interactions that involve low-frequency vibrational modes are less reliable. Comparisons are made between the calculated values and experimental results.  相似文献   

5.
The rovibrational energy levels of methane are determined from a quartic ab initio potential energy force field where the expansion coordinates are the Morse coordinates for the stretches and extension coordinates for the bends. Energies are calculated using canonical Van Vleck perturbation theory. Results are obtained for both rotation-vibration Hamiltonians expressed as functions of curvilinear and rectilinear normal coordinates. Second, fourth, and sixth order curvilinear results are compared with experimental results, and fourth order results for the rectilinear and curvilinear Hamiltonian are compared to each other. The calculated rovibrational levels are in good agreement with the experimental values for low J levels. The calculated rotational level splittings are in even better agreement with the experiment. In particular, the ground state tetrahedral splittings, which are as small as 10(-4) cm(-1), are well reproduced by our calculations at sixth order.  相似文献   

6.
Conclusions The method described for constructing a curvilinear coordinate system makes it possible to investigate the dynamics of chemical reactions involving the exchange of a light atom, when the curvature of the reaction path (the reference curve) is great, and the previously introduced coordinates (the natural reaction coordinates) are rejected. We note that the choice of a symmetric reference curve does not place restrictions on the form of the potential-energy surface of the chemical systems which could be investigated. If the path of the minimal energy on a specific potential-energy surface is asymmetric, a symmetric curve which approximates it in the interaction region, for example, in the least-squares sense, and coincides with it in the asymptotic regions, can be selected as the reference curve. Then the wave function must be expanded in terms of the eigenfunctions of oscillators displaced somewhat relative to the reference curve.The metric tensor of the new coordinates, unlike the metric tensor of the natural reaction coordinates, is not diagonal, and the determination of its matrix elements requires numerical integration. These circumstances result in the complicating of the calculations in the stage of the investigation of the dynamics, but this is apparently an unavoidable price for the possibility of solving the dynamic problem for a new class of chemical systems. The derivation of the equations of motion with consideration of matching and their solution will be the subjects of our next papers.Translated from Teoreticheskaya i éksperimental'naya Khimiya, Vol. 16, No. 4, pp. 449–457, July–August, 1980.  相似文献   

7.
A method is proposed for the calculation of matrix elements among various states of atoms. A set of tensor operators is the only entity in the formalism, and all formulas involve merely the vacuum expectation values of these tensor operators and the recoupling transformation coefficients. Some numerical examples are given for the Coulomb interaction matrix elements.  相似文献   

8.
An effective and general algorithm is suggested for variational vibrational calculations of N-atomic molecules using orthogonal, rectilinear internal coordinates. The protocol has three essential parts. First, it advocates the use of the Eckart-Watson Hamiltonians of nonlinear or linear reference configuration. Second, with the help of an exact expression of curvilinear internal coordinates (e.g., valence coordinates) in terms of orthogonal, rectilinear internal coordinates (e.g., normal coordinates), any high-accuracy potential or force field expressed in curvilinear internal coordinates can be used in the calculations. Third, the matrix representation of the appropriate Eckart-Watson Hamiltonian is constructed in a discrete variable representation, in which the matrix of the potential energy operator is always diagonal, whatever complicated form the potential function assumes, and the matrix of the kinetic energy operator is a sparse matrix of special structure. Details of the suggested algorithm as well as results obtained for linear and nonlinear test cases including H(2)O, H(3) (+), CO(2), HCNHNC, and CH(4) are presented.  相似文献   

9.
The hierarchical expansion of the kinetic energy (HEKE) operator in curvilinear coordinates presented recently (Strobusch and Scheurer, J. Chem. Phys. 2011a, 135, 124102; Strobusch and Scheurer, J. Chem. Phys. 2011b, 135, 144101) relies on a many‐body expansion of the metric tensor. It is shown how this expansion can be adapted to a specific system. An analytic formula is derived, which yields an estimate of the impact of a certain expansion term on the spectrum. In combination with the hierarchical structure of the many‐body expansion and interpolation techniques, the memory consumption and evaluation time of the HEKE operator as well as the computational costs for subsequent vibrational self‐consistent field and vibrational configuration interaction calculations are reduced significantly, which is demonstrated by studies on two small test systems H2O2 and formaldehyde (H2CO). © 2013 Wiley Periodicals, Inc.  相似文献   

10.
An approach to the calculation of Franck–Condon factors in curvilinear coordinates is outlined. The approach is based on curvilinear normal coordinates, which allows for an easy extension of Duschinsky’s transformation to the case of curvilinear coordinates, and on the power series expansion of the kinetic energy operator. Its usefulness in the case of molecules undergoing large displacements of their equilibrium nuclear configurations upon excitation is then demonstrated by an application to the vibrational structure of the photoelectron spectrum of ammonia, using an anharmonic potential only for the symmetric stretching and bending coordinates of the radical cation.  相似文献   

11.
A numerical solution, using a truncated matrix diagonalization is presented of the rotation-internal rotation problem of a semirigid molecular model consisting of two equivalent tops with Cs local symmetry. Starting from the classical hamiltonian various aspects of the isometrie group of this system are discussed. The coefficient of the energy matrix are calculated analytically and their asymptotic behavior is derived. Furthermore the selection rules and analytical expressions are given for electric dipole transition matrix elements and polarizability tensor matrix elements.  相似文献   

12.
13.
The Guan and Quade theory for vibration-large-amplitude internal-motion-rotation interactions has been applied to the internal rotation problem in CH(3)OH. Through the molecular dynamics, the cos 3tau and sin 3tau dependence of the torsional-rotational coefficients in the effective Hamiltonian have been calculated from molecular structure. The internal rotation coordinate tau(') for the vibrationally distorted molecule is shown to have the necessary threefold symmetry for all values of tau('). For the methyl deformation modes, the vibrational dependence of the internal rotation potential energy is shown to have a threefold symmetry. The S(t) and S(t)S(t) dependence of the inertia tensor and Coriolis coupling coefficients has been developed in terms of curvilinear internal coordinates. The T transformation separating rotation from vibrations in zeroth order is then applied, the kinetic-energy tensor inverted to momentum space, and finally the effective torsion-rotation coefficients are calculated by Van Vleck perturbation theory. When compared to the empirical results, the kinetic-energy contributions to the cos 3tau and sin 3tau dependence of the coefficients are as follows: 54% of P(a)(2) is accounted for, 28% of P(a)P(b), 16% of P(a)P(c), and 91% of the asymmetry. The calculation is inadequate to account for the P(b)(2),P(c)(2), and P(b)P(c) coefficients, ranging from factors of 20-70, even with the incorrect sign for some of the terms. Anharmonic force contributions from the vibrations have not been used in the calculation since these forces are not known at this time.  相似文献   

14.
The equilibrium structure, the 3N—6 vibrational frequencies and diagonalized inertia tensor molecular elements and consequently translational, vibrational and rotational partition functions were evaluated in order to calculate thermodynamic properties of adenosine. A detailed analysis of conformational features in terms of different valency coordinates energy contributions is also given.  相似文献   

15.
分析了薄膜体系几种常用测量坐标下的偏振Raman散射强度表达式,发现当测量坐标与膜坐标重叠对,各种偏振Raman散射强度只需用膜坐标中的Raman散射活性来表达。如果这两个坐标不重叠,需进一步求出膜坐标中Raman张量元二次交叉项的平均值。本文给出了单轴唯一角取向模型下这些二次交叉项的平均值表达式及取向分布模型下膜坐标中所有Raman张量元二次项平均值。  相似文献   

16.
The construction algorithm is proposed for the internal rotation coordinates in polyatomic molecules. It is based on the properties of the matrix of kinematic coefficients when an excessive system of natural coordinates is introduced. The approximations providing the separation of variables are considered. The exact form of the kinetic energy operator is given.  相似文献   

17.
If a macromolecule is described by curvilinear coordinates or rigid constraints are imposed, the equilibrium probability density that must be sampled in Monte Carlo simulations includes the determinants of different mass-metric tensors. In this work, the authors explicitly write the determinant of the mass-metric tensor G and of the reduced mass-metric tensor g, for any molecule, general internal coordinates and arbitrary constraints, as a product of two functions; one depending only on the external coordinates that describe the overall translation and rotation of the system, and the other only on the internal coordinates. This work extends previous results in the literature, proving with full generality that one may integrate out the external coordinates and perform Monte Carlo simulations in the internal conformational space of macromolecules.  相似文献   

18.
It is customary to describe molecular vibrations using as exact kinetic energy operators and as accurate potentials as possible. It has become a standard approach to express Hamiltonians in curvilinear internal displacement coordinates, because they offer a simple and physical picture of vibrational motions, including large amplitude changes in the shape. In the older normal mode model of molecular vibrations, the nuclei are thought to vibrate infinitesimally about the reference configuration, and the shape of the molecule is described using linearized approximations of the true geometrically defined internal displacement coordinates. It is natural to ask how the two approaches are related. In this work, I present a general yet practical way to obtain curvilinear displacement coordinates as closed function of their linearized counterparts, and vice versa. In contrast to the conventional power series approach, the body-frame dependency is explicitly taken into account, and the relations are valid for any value of the coordinates. The present approach also allows one to obtain easily exact kinetic energy operators in linearized shape coordinates.  相似文献   

19.
Quantum mechanical calculations of the cross sections for photodissociation of CH4 and CD4 in the 1t2-->3s band are presented. The potential energy surfaces for the three states correlating with the 1 1T2 state at tetrahedral geometries are calculated. The elements of the (3x3) matrix representing the electronic Hamiltonian in the diabatic basis are expanded in powers of nuclear coordinates, up to the second order. The expansion coefficients are based on accurate multireference configuration interaction calculations. The electronically nonadiabatic dynamics is treated with the multiconfiguration time-dependent Hartree approach. All nine internal degrees of methane are included in the quantum dynamics simulations. The calculated cross section agrees well with experiment. Semiclassical calculations using the reflection principle suggest that the peaks in the spectrum correspond to the three adiabatic electronic states correlating with the 1 1T2 state at Td geometries. However, the non-Born-Oppenheimer terms in the Hamiltonian have a strong effect on the positions of the peaks in the absorption spectrum. The results of semiclassical calculations, which neglect these terms, are therefore quite different from the accurate quantum results and experiment.  相似文献   

20.
The hierarchical expansion of the kinetic energy operator in curvilinear coordinates presented earlier for the vibrational self-consistent field technique is extended to the vibrational configuration interaction (VCI) method. The high accuracy of the modified VCI method is demonstrated by computing first excitation energies of the H(2)O(2) molecule using an analytic potential (PCPSDE) and showing convergence to accurate results from full dimensional discrete variable representation calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号