首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate anionic [Co,CO2,nH2O] clusters as model systems for the electrochemical activation of CO2 by infrared multiple photon dissociation (IRMPD) spectroscopy in the range of 1250–2234 cm−1 using an FT-ICR mass spectrometer. We show that both CO2 and H2O are activated in a significant fraction of the [Co,CO2,H2O] clusters since it dissociates by CO loss, and the IR spectrum exhibits the characteristic C−O stretching frequency. About 25 % of the ion population can be dissociated by pumping the C−O stretching mode. With the help of quantum chemical calculations, we assign the structure of this ion as Co(CO)(OH)2. However, calculations find Co(HCOO)(OH) as the global minimum, which is stable against IRMPD under the conditions of our experiment. Weak features around 1590–1730 cm−1 are most likely due to higher lying isomers of the composition Co(HOCO)(OH). Upon additional hydration, all species [Co,CO2,nH2O], n≥2, undergo IRMPD through loss of H2O molecules as a relatively weakly bound messenger. The main spectral features are the C−O stretching mode of the CO ligand around 1900 cm−1, the water bending mode mixed with the antisymmetric C−O stretching mode of the HCOO ligand around 1580–1730 cm−1, and the symmetric C−O stretching mode of the HCOO ligand around 1300 cm−1. A weak feature above 2000 cm−1 is assigned to water combination bands. The spectral assignment clearly indicates the presence of at least two distinct isomers for n ≥2.  相似文献   

2.
The use of serpentine as a potential nuclear shielding material necessitates a chemical quality control of the samples before its use in reactors. With this in view, characterization of these mineral samples was carried out using inductively coupled plasma atomic emission spectrometry (ICP-AES) and Instrumental neutron activation analysis (INAA) methods. The analytical results obtained by both ICP-AES and NAA techniques were found to be comparable. Na, Cr, Co, Zn, and Cu were found to be present in all samples of Indian origin while Ga, Ag, Ni, and Cd were found to below the limits of detection. A comparison on the detection limits of elements of interest was also carried out by both the analytical techniques and found to be in good agreement. An infrared spectroscopic investigation was also carried out on all the mineral samples. Bands at 3,689 and 3,648 cm−1 were attributed to inner and outer hydroxyl stretching of Mg–OH, respectively. The weak and broad band centered around 3,416 cm−1 was assigned due to the stretching vibrations of the adsorbed water molecules while three bands at 1076, 1022 and 968 cm−1 were prescribed to the vibrations of the SiO4 tetrahedra.  相似文献   

3.
A method for calibrating Raman intensities of diluted aqueous solutions, based on the integrated intensity of the OH stretching bands of liquid water as an external intensity standard, is described and used to obtain a difference spectrum that reveals intensity changes mainly due to the intermolecular interaction between two solutes. The method is applied to trimethyl-β-cyclodextrin in sodium decanoate aqueous solutions. The difference between the interaction spectra above and below the critical micellar concentration of sodium decanoate, in the CH stretching region between 2700 and 3100 cm−1, shows an intensity increase of the CH stretching bands for trimethyl-β-cyclodextrin above the critical micellar concentration of sodium decanoate, whereas β-cyclodextrin is relatively insensitive to the presence of decanoate ion micelles in aqueous solution.  相似文献   

4.
We report the infrared, Raman, and surface‐enhanced Raman scattering (SERS) spectra of triruthenium dipyridylamido complexes and of diruthenium mixed nickel metal‐string complexes. From the results of analysis on the vibrational modes, we assigned their vibrational frequencies and structures. The infrared band at 323–326 cm?1 is assigned to the Ru3 asymmetric stretching mode for [Ru3(dpa)4Cl2]0–2+. In these complexes we observed no Raman band corresponding to the Ru3 symmetric stretching mode although this mode is expected to have substantial Raman intensity. There is no frequency shift in the Ru3 asymmetric stretching modes for the complexes with varied oxidational states. No splitting in Raman spectra for the pyridyl breathing line indicates similar bonding environment for both pyridyls in dpa , thus a delocalized structure in the [Ru3]6–8+ unit is proposed. For Ru3(dpa)4(CN)2 complex series, we assign the infrared band at 302 cm?1 to the Ru3 asymmetric stretching mode and the weak Raman line at 285 cm?1 to the Ru3 symmetric stretching. Coordination to the strong axial ligand CN weakens the Ru‐Ru bonding. For the diruthenium nickel complex [Ru2Ni(dpa)4Cl2]0–1+, the diruthenium stretching mode νRu‐Ru is assigned to the intense band at 327 and 333 cm?1 in the Raman spectra for the neutral and oxidized forms, respectively. This implies a strong Ru‐Ru metal‐metal bonding.  相似文献   

5.
Adsorption of carbon dioxide on H‐ZSM‐5 zeolite (Si:Al=11.5:1) was studied by means of variable‐temperature FT‐IR spectroscopy, in the temperature range of 310–365 K. The adsorbed CO2 molecules interact with the zeolite Brønsted‐acid OH groups bringing about a characteristic red‐shift of the O? H stretching band from 3610 cm?1 to 3480 cm?1. Simultaneously, the ν3 mode of adsorbed CO2 is observed at 2345 cm?1. From the variation of integrated intensity of the IR absorption bands at both 3610 and 2345 cm?1, upon changing temperature (and CO2 equilibrium pressure), the standard adsorption enthalpy of CO2 on H‐ZSM‐5 is ΔH0=?31.2(±1) kJ mol?1 and the corresponding entropy change is ΔS0=?140(±10) J mol?1 K?1. These results are discussed in the context of available data for carbon dioxide adsorption on other protonic, and also alkali‐metal exchanged, zeolites.  相似文献   

6.
The FTIR study presented in this work, on water dissolved in triethylamine (TEA), reveals the formation of water clusters in the TEA liquid phase at tenths of water molar concentrations. In the OH stretching region, the FTIR spectra of water in TEA show, at high frequencies, a narrow band at 3682 cm−1 and, at low frequencies, a wide band that can be resolved into four peaks with maxima at 3249 cm−1, 3348 cm−1, 3440 cm−1 and 3545 cm−1. The results have been rationalised assuming the formation of clusters containing tens of three- and four-coordinated water molecules. TEA molecules surrounding the clusters are hydrogen bonded to one OH of the water molecules at the surface, leaving dangling protons. Further, the analyses of the spectra suggest that, in the used range, the water cluster mean size does not depend strongly on the water concentration.  相似文献   

7.
The mineral ettringite has been studied using a number of techniques, including XRD, SEM with EDX, thermogravimetry and vibrational spectroscopy. The mineral proved to be composed of 53% of ettringite and 47% of thaumasite in a solid solution. Thermogravimetry shows a mass loss of 46.2% up to 1000 °C. Raman spectroscopy identifies multiple sulphate symmetric stretching modes in line with the three sulphate crystallographically different sites. Raman spectroscopy also identifies a band at 1072 cm−1 attributed to a carbonate symmetric stretching mode, confirming the presence of thaumasite. The observation of multiple bands in the ν4 spectral region between 700 and 550 cm−1 offers evidence for the reduction in symmetry of the sulphate anion from Td to C2v or even lower symmetry. The Raman band at 3629 cm−1 is assigned to the OH unit stretching vibration and the broad feature at around 3487 cm−1 to water stretching bands. Vibrational spectroscopy enables an assessment of the molecular structure of natural ettringite to be made.  相似文献   

8.
Surface-enhanced Raman scattering (SERS) has been observed for poly(4-vinyl pyridine) absorbed onto silver island films. Bands near 1219 and 1613 cm?1, which are weak in normal Raman spectra of PVP, are strong in SERS spectra, and the band near 1020 cm?1, which is the strongest band in the normal spectra, is relatively weak in SERS. The strongest bands in the SERS spectra all belong to the same symmetry species as αZZ, implying that the pyridine moieties are adsorbed through the nitrogen atoms with a vertical conformation. The ring breathing mode of the pyridine rings is observed near 1020 cm?1, a frequency characteristic of pyridinium ions or coordinated pyridine, providing further evidence for adsorption through the nitrogen atoms. Silver catalyzed photooxidation, which can lead to the appearance of artifacts in SERS spectra, particularly of polymers, can be reduced by overcoating SERS samples with thin films of polymers such as poly(methyl methacrylate) that have low Raman scattering cross sections.  相似文献   

9.
The effects of various cations (Li+, Na+, K+, Rb+, Cs+, Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, and Ni2+) and anions (Cl?, Br?, I?, \( {\text{NO}}_{3}^{ - } \) , \( {\text{ClO}}_{4}^{ - } \) , \( {\text{HCO}}_{3}^{ - } \) , and \( {\text{CO}}_{3}^{2 - } \) ) on the molar absorptivity of water in the OH stretching band region (2,600–3,800 cm?1) were ascertained from attenuated total reflection infrared spectra of aqueous electrolyte solutions (22 in all). The OH stretching band mainly changes linearly with ion concentrations up to 2 mol·L?1, but several specific combinations of cations and anions (Cs2SO4, Li2SO4, and MgSO4) present different trends. That deviation is attributed to ion pair formation and cooperativity in ion hydration, which indicates that the extent of the ion–water interaction reflected by the OH stretching band of water is beyond the first solvation shell of water molecules directly surrounding the ion. The obtained dataset was then correlated with several quantitative parameters representing structural and dynamic properties of water molecules around ions: ΔG HB, the structural entropy (S str), the viscosity B-coefficient (B η ), and the ionic B-coefficient of NMR relaxation (B NMR). Results show that modification of the OH stretching band of water caused by ions has quasi-linear relations with all of these parameters. Vibrational spectroscopy can be a useful means for evaluating ion–water interaction in aqueous solutions.  相似文献   

10.
The vibrational spectroscopy of lithium dichloride anions microhydrated with one to three water molecules, [LiCl2(H2O)1–3], is studied in the OH stretching region (3800–2800 cm−1) using isomer-specific IR/IR double-resonance population labelling experiments. The spectroscopic fingerprints of individual isomers can only be unambiguously assigned after anharmonic effects are considered, but then yield molecular level insight into the onset of salt dissolution in these gas phase model systems. Based on the extent of the observed frequency shifts ΔνOH of the hydrogen-bonded OH stretching oscillators solvent-shared ion pair motifs (<3200 cm−1) can be distinguished from intact-core structures (>3200 cm−1). The characteristic fingerprint of a water molecule trapped directly in-between two ions of opposite charge provides an alternative route to evaluate the extent of ion pairing in aqueous electrolyte solutions.  相似文献   

11.
Absorption spectra from 4000 to 1200 cm?1 of amorphous solid water and polycrystalline ice Ic have been measured between 10 K and 140 K. Warm up and recooling of an H2O sample prepared at 10 K gives rise to both irreversible and reversible changes in the peak frequency, band width, and peak height as well as the integrated intensity of the OH stretching band. These spectral effects are related to structural differences. The structure of amorphous solid water also depends on deposition conditions. The optical constants of amorphous so water are determined at 10 K and 80 K from a Kramers-Kronig analysis of the transmission spectra taking into account reflection and interference losses. The astrophysical implication of the temperature dependence of peak frequency and band width of the 3250 cm?1 band in amorphous solid water is discussed briefly.  相似文献   

12.
The IR spectra (3500—150 cm?1) of the complexes [M(aniline)2,X2 (M = Co, Ni, Cu, Zn; X = Cl, Br), [Zn(aniline)2I2] are discussed. Assignments of the internal ligand vibrations are based on the band shifts which result from 15N-labelling of the amino group. The metal—ligand stretching frequencies, ν(M—N) and ν(M—X), are assigned on the basis of the band shifts which occur on 15N-labelling and metal ion and halogen substitution. Two bands within the range 350–450 cm?1 are assigned to ν(M—N) while the ν(M—X) bands occur within the range 170–320 cm?1. The effects of structure and coordination number on ν(M—N) and ν(M—X) are discussed. The spectra of two ethanol adducts, [M(aniline)2-(ethanol)2Cl2] (M = Co, Ni) compared with those of the unsolvated species [M(aniline)2-Cl2], exhibit a unique band near 480 cm?1 which is insensitive to 15N-labelling and is assigned to ν(M—O).  相似文献   

13.
Raman spectroscopy complimented with infrared spectroscopy has been used to characterise the antimonate mineral bindheimite Pb2Sb2O6(O,OH). The mineral is characterised by an intense Raman band at 656 cm−1 assigned to SbO stretching vibrations. Other lower intensity bands at 664, 749 and 814 cm−1 are also assigned to stretching vibrations. This observation suggests the non-equivalence of SbO units in the structure. Low intensity Raman bands at 293, 312 and 328 cm−1 are assigned to the OSbO bending vibrations. Infrared bands at 979, 1008, 1037 and 1058 cm−1 may be assigned to δOH deformation modes of SbOH units. Infrared bands at 1603 and 1640 cm−1 are assigned to water bending vibrations, suggesting that water is involved in the bindheimite structure. Broad infrared bands centred upon 3250 cm−1 supports this concept. Thus the true formula of bindheimite is questioned and probably should be written as Pb2Sb2O6(O,OH,H2O).  相似文献   

14.
The surface species resulting in exposing of the ZSM-5 zeolite at elevated temperatures to methanol, deuterated methanol or ethylene have been studied by IR method.The three-step adsorption at 150°, 300°, 420° C or one-step adsorption at 420° C have been carried out in order to prepare the samples for IR. In all cases the most prominent band appeared in the range 1495–1515 cm?1; besides two bands at about 1470 and 1370 cm?1 have been observed. On the basis of Greenler's results and of the shift values of the bands in our spectrum of adsorbed deuterated methanol it was supposed that the band 1495–1515 cm?1 is due to the OCO group from the surface species. Moreover these species would involve both oxygen atoms from the surface of zeolite but not from OH groups of methanol.  相似文献   

15.
Vapor-phase infrared characteristic frequencies of ketones and aldehydes have been studied. The CO stretching vibrations in vapor phase have higher frequencies than those in condensed phase. The shifts are about 20 cm−1 for ketones and about 10 cm−1 for aldehydes. Both ketone and aldehyde have an absorption band at the range 1300–1100 cm−1, although their intensities are very different. This band was assigned to the CC stretching vibration of C(CO)unit.  相似文献   

16.
We studied the interaction of water in poly(ethylene‐co‐vinyl acetate) of various vinyl acetate compositions and poly(vinyl acetate), on the basis of the infrared spectrum of the water dissolved therein. The spectrum shows a very sharp and distinct band at about 3690 cm?1 (named as A), and less‐sharp two bands around 3640 (B) and 3550 cm?1 (C), the A band being outstanding especially at a low vinyl acetate composition. As the vinyl acetate composition increases, the A band decreases in intensity relative to the C band, whereas the B band increases contrarily. Analysis of the spectral change has elucidated that one‐bonded water (of which one OH is hydrogen‐bonded to the C?O of an ester group and the other OH is free) and two‐bonded water (each OH of which is hydrogen‐bonded to one C?O) coexist in the copolymer and that two‐bonded water increases in relative population with increasing vinyl acetate composition. Dissolved water is entirely two‐bonded in poly(vinyl acetate), in which C?O groups are densely distributed in the matrix. We proved that dissolved water in polymers is hydrogen‐bonded through one or two OH groups to the possessed functional groups but does not cluster. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 777–785, 2005  相似文献   

17.
The vibrational frequency of free OH? ions, which cannot be directly measured, has been claimed to be 3700 cm?1. In solid hydroxides the OH stretching frequency has been found in the range from 3690 to 3100 cm?1. The decrease of the vibrational frequency has been interpreted to be caused by hydrogen bridges or the increase of the metal oxygen bond strength. We suggest an alternative explanation. The vibrational frequency of unperturbed OH? ions is 3570 ± 10 cm?1. In ionic hydroxides this frequency is increased due to repulsion effects of the lattice or decreased if hydrogen bonds are present, to a large extent (up to 400 cm?1) in the case of common OH?….X bridges and only up to 70 cm?1 in the case of XH….OH? bonds.  相似文献   

18.
Aspects of the molecular structure of the mineral dorfmanite Na2(PO3OH)·2H2O were determined by Raman spectroscopy. The mineral originated from the Kedykverpakhk Mt., Lovozero, Kola Peninsula, Russia. Raman bands are assigned to the hydrogen phosphate units. The intense Raman band at 949 cm−1 and the less intense band at 866 cm−1 are assigned to the PO3 and POH stretching vibrations. Bands at 991, 1066 and 1141 cm−1 are assigned to the ν3 antisymmetric stretching modes. Raman bands at 393, 413 and 448 cm−1 and 514, 541 and 570 cm−1 are attributed to the ν2 and ν4 bending modes of the HPO4 units, respectively. Raman bands at 3373, 3443 and 3492 cm−1 are assigned to water stretching vibrations. POH stretching vibrations are identified by bands at 2904, 3080 and 3134 cm−1. Raman spectroscopy has proven very useful for the study of the structure of the mineral dorfmanite.  相似文献   

19.
Structure of 4‐biphenylthiolate on Au nanoparticle surfaces has been studied by UV‐Vis absorption spectroscopy, transmission electron microscopy and surface‐enhanced Raman scattering (SERS). 4‐Biphenylthiolate is found to have a standing geometry on Au from the presence of the benzene ring CH stretching band identified at ~3060 cm?1. The ν8a band at 1597 cm?1 in the ordinary Raman spectrum was found to split clearly into two features at 1599 and 1585 cm?1. This result suggests that orientation of the phenyl rings in 4‐biphenylthiolate may be quite different and should not lie in the same plane on Au nanoparticle surfaces. On the basis of the electromagnetic enhancement factor, the dihedral angle could be estimated with a reported value of the tilt angle. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
Summary A combination of thermogravimetry and hot stage Raman spectroscopy has been used to study the thermal decomposition of the synthesised zinc substituted takovite Zn6Al2CO3(OH)16·4H2O. Thermogravimetry reveals seven mass loss steps at 52, 135, 174, 237, 265, 590 and ~780°C. MS shows that the first two mass loss steps are due to dehydration, the next two to dehydroxylation and the mass loss step at 265°C to combined dehydroxylation and decarbonation. The two higher mass loss steps are attributed to decarbonation. Raman spectra of the hydroxyl stretching region over the 25 to 200°C temperature range, enable identification of bands attributed to water stretching vibrations, MOH stretching modes and strongly hydrogen bonded CO32--water bands. CO32- symmetric stretching modes are observed at 1077 and 1060 cm-1. One possible model is that the band at 1077 cm-1is ascribed to the CO32- units bonded to one OH unit and the band at 1092 cm-1is due to the CO32- units bonded to two OH units from the Zn-takovite surface. Thermogravimetric analysis when combined with hot stage Raman spectroscopy forms a very powerful technique for the study of the thermal decomposition of minerals such as hydrotalcites.</o:p>  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号